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Motivation

Most matchable keypoints: regions with reasonably high Difference of Gaussian
(DoG) responses. [1]

KAZE features have strong response along the boundary of objects while SIFT
captures shape, texture etc. similar to neuronal response of human vision

system. [6]
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Background



SIKA

* SIKA keypoints [7] are direct combination of SIFT and KAZE keypoints. The
selection consists of either all or a subset of keypoints based on the available
object annotations.

* Suited for Object Classification and similar tasks with available object
annotations for training.
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SIKA: Approach
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SIFT vs KAZE vs SIKA

Property SIFT KAZE SIKA
Keypoint Distribution @ corners boundaries objects
No. of Keypoints Large Relatively fewer | Selective (Practically
needs less than 50%
of keypoints as
compared to SIFT
and KAZE)
Scale Space Linear Non linear Both
Descriptor size 128 64/128 Respective
dimensional | dimensional Descriptors
descriptor descriptor
Object Classification Lags behind No where near = Comparable to CNN
[7] CNN CNN (not always)




Proposed Methodology: An overview

KAZE features based on non-linear anisotropic diffusion filtering [4].




Proposed Methodology: Flow
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Fig 1. : Flow diagram for the proposed methodology




Keypoint Selection and Ranking
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rotation (r/6, /3, 2 * n/3), scaling (0.5, 1.5, 2),
cropping (20%, 50%), affine.

Sp iy = Dist(KP(i)) + Det(KP(i)) + Rep(KP(i))

KP(i) = {(X;, V), s}, i = 1...N




Keypoint Selection and Ranking

Dist(KP(i)) = ,,U,l_ T > ED(di,d;)
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Keypoint Selection and Ranking
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Keypoint Selection and Ranking
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Keypoint Selection and Ranking

SalientKP = KP(i) st. Sk P(i) = Msalscores 1 <0 < N

Hsalscore = 'TTI-EH-‘TE{SRFP{:'}}, 1 E i E N




Texture Map based SIFT keypoints




Texture Map based SIFT keypoints

TertureKP = KP(i) st Sgp(i) 2 fsatmap, 1 S < N




Algorithm: Ranking Salient keypoints

Algorithm 1 Algorithm for Ranking Salient Keypoints

I: procedure RANK-KP
Compute SIFT (SIFTyp) and KAZE (K AZE p) keypoints on input image [
for each keypoint i

Skp() = Dist(KP(i)) + Det(KP(i)) + Rep(K P(i))
end for
SalientKP = {[SIFTxp KAZEgp| | Skpii) > fsalscore})
Distribute orientations of SIF T p into ¢ equal sized bins
Compute texture map using Gabor Filter with ¢ orientations
TertureKP = {SIFTxp | Sk P(i) = Hsalmap }
10:  SalientKP = [SalientKP  TextureKP|
11: end procedure
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EXPERIMENTAL RESULTS AND DISCUSSIONS




Object Representation

TABLE I: Performance Analysis of various feature detectors
for object representation.

Keypoints inside Keypoints inside

Feature Detector Bounding Box (in %) (a) | region (in %) (b)

SIFT 76 62
SURF 71 58
KAZE 871.62 69
RankedKP 54 82.7




Object Representation

Fig. 2: Figure showing a) Object annotation b) Saliency Map c) Gabor filtered image
(Texture Map) d) Ranked keypoints inside the object contour




Object Representation
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Fig. 3: Texture and Ranked (SIFT and KAZE) keypoints




Object Matching

TABLE II: Object Matching.

Total KP

Feature Detector matches EE:;EEEEE} (b) Mean ED (c)
(%0) (a)

SIFT 61 O (.0960

SURF 78 74 0.0752

KAYE 51 0l 0.1297

(Ranked+Texture) | &9 0f 0.0011




Object Matching
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Fig. 4: Correctly matched keypoints by the proposed
selection strategy: red (KAZE), yellow (SIFT), green
(TextureKP) on the bikes dataset (VGG).




Object Matching
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CONCLUSION
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Appendix



Scale Invariant Feature Transform: Keypoint

Detection

Step 1: Construction of Scale Space
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Gaussian images grouped
by octave.

DoG images grouped
by octave

Range: [-0.11, 0.131]



Extrema Detection (for each pixel)

Choose XX % Optimization Tricks:
consecutive DoG XX%

. ) & & ¢ .
images 1. For non-maxima and

non-minima all points

zx X need not to be
26 neighbours X: : compared
2. First and last images
;x| necmene
38 P
) & & ¢

This is called a KEYPOINT.




Step II: Keypoint Localization

* (b) Reject keypoints with low contrast
* (c) Reject keypoints that are localized along an edge
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Step IlI: Orientation Assighnment

* Create gradient histogram for the keypoint
neighbourhood ( 36 bins)

* Neighborhood: a circular Gaussian falloff from
the keypoint center (\sigma=1.5 pixels at the
current scale, so the effective neighborhood is
about 9x9)
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Extracted keypoints,
arrows indicating scale
and orientation




Scale Invariant Feature Transform: Keypoint

Description

« Take 16x16 square window around detected keypoint

« Decompose this into 4x4 tiles

« Compute gradient orientation for each pixel (8 bins)

» Create histogram over edge orientations weighted by magnitude
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Image gradients
4x4x8= 128D

Adapted from slide by David Lowe



KAZE: Background

Nonlinear Diffusion Filtering

@ Nonlinear diffusion approaches describe the evolution of the luminance of an image
through increasing scale levels as the divergence of a flow function that controls the
diffusion process

i = div(e(x,y.t)- VL) (
ot

@ The function ¢ depends on the local image differential structure, and this function can be
either a scalar or a tensor

@ The time 1 is the scale parameter, and larger values lead to simpler image representations



KAZE: Background

Perona and Malik Diffusion Equation

@ Function ¢ dependent on the gradient magnitude

@ Reduce diffusion at edges location, encouraging smoothing within a region instead of
smoothing across boundaries

C(X:,J."',f} — g{leﬂ' (X._J."'._ ”l}

@ Two different formulations for the conductivity function g

@ g, promotes high-contrast edges
@ - promotes wide regions over smaller ones

2
gy = exp (——g—lvﬁf“' )

_ 1
1+ RJ



KAZE: Background

@ The contrast factor k is computed empirically as the 70% percentile of the gradient
histogram of a smoothed version of the original images

e It can be also set by hand or by some learning
@ If the conductivity function c is constant, we obtain the heat equation, i.e. linear diffusion
@ Rapidly decreasing diffusivities

@ Smoothing on both sides of an edge is much stronger than smoothing across it
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KAZE: Background
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Figure: First row: g; conductivity function. Second row: g, conductivity function. Notice that for increasing
values of k only higher gradients are considered.



KAZE: Background

Additive Operator Splitting (AOS)

@ Modification of the semi-implicit scheme

3
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@ The solution L'+ can be obtained as:

—1

m
L+ = (f_ TZA,(U}) L
/=1

@ Now the total diffusion is the addition of two 1D diffusion processes

@ The matrix A; encodes the diffusivities for each image dimension



KAZE: Keypoint Detection

@ Steps in KAZE Detection:
@ Build nonlinear scale space using AOS and a set of octaves O and sublevels S

51(0,8) = 002°"%/5, 0€[0...0—-1],s€[0...S—1].i€[0...N]

@ We need to map scale units to time units:

m —1
[+l — (j — (tix1 — ;) 'ZAI (Li)) It
=1

equation for building non linear scale space using AOS



Non linear vs linear scale space

Comparison between gaussian blurring and nonlinear diffusion

ti =20.48 ti =81.92 t; = 130.04 ti =206.42



KAZE: Keypoint Detection

L‘Hessian — Ug (L'I—T‘Lyy o Lgy)

we analyze the detector response at different scale levels o;.
We search for maxima in scale and spatial location. T'he search for extrema is performed
in all the filtered images excepti = 0 and i = N. Each extrema is searched over a rect-
angular window of size o; x o; on the current z, upper 7 + 1 and lower ¢ — 1 filtered
images.

The set of first and second order derivatives are approximated by means of 3 x 3
Scharr filters of different derivative step sizes ;. Second order derivatives are approx-
imated by using consecutive Scharr filters in the desired coordinates of the derivatives.



KAZE: Keypoint Detection

Scharr edge filter

The Scharr operator is the most common technique with two kernels used to
estimate the two dimensional second derivatives horizontally and vertically.
The operator for the two direction is given by the following formula:

3 0 -3 3 10 3
K= 10 0 —10 h Ky= 0 0 0
3 0 -3 -3 —10 -3




KAZE: Keypoint Description

Similar to SURF, we find the dominant orientation in a circular area
of radius 60; with a sampling step of size ;. For each of the samples in the circular
area, first order derivatives L, and L, are weighted with a Gaussian centered at the
interest point. Then. the derivative responses are represented as points in vector space
and the dominant orientation is found by summing the responses within a sliding circle

segment covering an angle of 7 /3. From the longest vector the dominant orientation is
obtained.

I

- . . [ ;




KAZE: Keypoint Description

Building the Descriptor. We use the M-SURF descriptor adapted to our nonlinear
scale space framework. For a detected feature at scale o;. first order derivatives L, and
L, of size o; are computed over a 240; x 240; rectangular grid. This grid is divided
into 4 x 4 subregions of size 90; x 90; with an overlap of 2;. The derivative responses
in each subregion are weighted with a Gaussian (o7 = 2.50;) centered on the subre-
gion center and summed into a descriptor vector dy, = (O L. > Ly, > |Lal|, D | Lyl).
Then, each subregion vector is weighted using a Gaussian (o2 = 1.50;) defined over a
mask of 4 x 4 and centered on the interest keypoint. When considering the dominant ori-
entation of the keypoint, each of the samples in the rectangular grid is rotated according
to the dominant orientation. In addition, the derivatives are also computed according to
the dominant orientation. Finally. the descriptor vector of length 64 is normalized into
a unit vector to achieve invariance to contrast.




