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Abstract. Optical Flow is a popular method of computer vision for mo-
tion estimation. In this paper, we present a refined optical flow estima-
tion method. Central to our approach is exploiting contour information
as most of the motion lies on the edges. Further, we have formulated it as
sparse to dense motion estimation. Proposed method has been evaluated
on challenging real life image sequences of KITTI and Fish4Knowledge
database. Results demonstrate that method performs well in case of low
contrast, highly cluttered background, dynamic background, occlusion
and illumination change.

Keywords: Optical flow · Marine Ecosystem · Dense Correspondence ·
Holistically Nested Edge Detection.

1 Introduction

Optical flow estimation is the primary block in multitude of computer vision
applications involving motion information such as object segmentation, object
detection and object tracking etc. Despite many research strides in this area,
accurate estimation of optical flow is still an open problem due to challenges
of real world videos. Traditional optical flow based approaches rely upon the
energy minimization functions [9, 16]. Due to the recent advancements in deep
learning paradigms, optical flow estimation utilizing supervised deep learning
based methods such as FlowNet2.0[10], PWC-Net[24] etc have outperformed
traditional approaches. However, deep learning based supervised approaches are
heavily dependent on the availability on ground truth data. In order to handle
this, the networks are trained on synthetic data due to unavailability of ground
truth on real scene sequences. There is high differences in the real and synthetic
images therefore existing approaches on synthetic data do not generalize on
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real images. Motivated by above reasons, researchers explored the direction of
unsupervised Optical Flow estimation techniques like DD Flow [15] etc. But
these approaches could not surpass the accuracy of supervised methods.

In recent years, there has been growing research interest to study the behavior
of marine species due to its potential applications. Due to the complexity of
the underwater environment and the limitations of human divers, underwater
scenario is mainly explored by submarines, remotely operated vehicles (ROVs)
and autonomous underwater vehicles (AUVs). Marine video surveillance is highly
preferred over photography by divers or net-casting methods, since it provides a
large amount of continuous data without effecting the fish behaviour. Detecting
objects in underwater video is highly challenging task. The challenge posed is
due to poor quality of vision data due to high turbidity, appearance variation
with depth, light attenuation, suspended particles in the medium and dynamic
environments due to movement in water particles and coral reefs as shown in
Fig. 1. Objects are highly deformable, identical or very similar in appearance.

(a)                          (b)                        (c)

Fig. 1. Challenges in marine environment (a) Camouflage (b)Hazy environment (c)
Clutter

In this paper, the objective is to find motion estimation of fishes in under-
water videos using image processing and computer vision concepts. hence, we
propose Underwater Refined Motion Estimation (U-RME) in hazy, cluttered and
dynamic environments. Recent efforts towards this problem assume availability
of annotated datasets [10, 19, 24]. Most popular approach for object detection
is to train a model by supervised learning. To achieve desirable accuracy, these
methods require a large amount of annotated data, which is highly time con-
suming and requires human expertise to recognize fishes in cluttered background
and high camouflage based marine conditions. In practical scenario, the datasets
do not span over all possible classes of fish, limiting their effectiveness in analyz-
ing underwater ecosystem, tracking fish population etc. while at the same time
dampening utilization of such techniques in exploratory research for new applica-
tions of underwater imaging. Moreover, it is also important to note that, a large
amount of images available over the web is not part of standard datasets. The
pre-trained object detectors process individual frames of videos while completely
ignoring the temporal information. Human visual system does not receive static
images, it receives continuous video streams. Appearance cues provide limited
information when videos are recorded in low light and hazy conditions. In such
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cases, motion is an important factor to get significant information about moving
object in videos. Gestalt principle also states that “grouping forms the basis of
human perception”[11]. Points moving together can be grouped together and
they often belong to the same object. Motion based grouping appears early in
the stages of visual perception than static grouping.

To this end, we introduce a refined end-to-end motion estimation technique.
The key contributions in this paper can be summarized as,

– We have updated the pipeline by including a pre-processing block to handle
highly illumination varying and hazy environment. Holistically nested edge
detection and a median filtering based objective function is adopted to get
better motion boundaries in cluttered and dynamic environments.

– To the best of our knowledge, we are the first to utilize dense optical flow
for detecting motion of fish in real-life dataset of fish4knowledge.

– We have evaluated the proposed approach with several flow based techniques
over static and dynamic environments.

The paper is organized as follows. In Sec. 2, we provide the related work on
optical flow and motion based object detection in marine environment. In Sec. 3,
we discuss the proposed methodology. In Sec. 4, we give the experimental results
and analysis followed by conclusion in Sec. 5.

2 Related Work

Optical flow estimation has been studied as an important topic in computer vi-
sion for long. Research work done in this area can be broadly classified into var-
ious categories. Traditional methods are based on variational approaches [9, 16,
1]. In such methods, the aim is to optimize the function of brightness constancy
and spatial smoothness. These methods are suitable for small displacements but
fail in case of large displacement flows. Coarse to fine approaches have been
proposed to tackle large displacements [3]. Later approaches integrate feature
matching to tackle this issue. Specially, they find sparse feature correspondences
to initialize flow estimation and further refine it in a pyramidal coarse-to-fine
manner. SIFT FLOW performs dense matching between the Scale Invariant Fea-
ture Trasform (SIFT) feature matching between two images [14]. The seminal
work of EpicFlow [21] interpolates dense flow from sparse matches and has been
widely used for scene flow estimation in dynamic environments.

Recently, the success of deep learning has inspired researchers to solve flow
estimation problem as optical flow learning problem. The pioneering work is
FlowNet 2.0 [10], which is based on supervised learning and generates a dense
optical flow map with two consecutive frame and a trained model. SpyNet in-
troduces a spatial pyramid network in order to handle large displacements [19].
Recently, PWC-Net [24] has been proposed to warp extracted features learned
by CNNs instead of warping images over different scales. Although these ap-
proaches show promising performance but the problem is that these methods
require a large amount of labeled training data, which is particularly difficult



4 S.Gupta et al.

to obtain for optical flow particularly in case of underwater scenarios. Synthetic
dataset is used for training such models, while real images are very different from
synthetic images. Due to this gap, these models do not always perform well with
real data.

Another promising direction is to develop unsupervised learning approaches
[20]). The idea is to warp the target image according to the predicted flow,
the difference between the reference image and the warped image is optimized
using a photometric loss. Most recent work of DDFlow generate annotations
on unlabeled data using a model trained with a classical optical flow energy
function, and then retrain the model using those extra generated annotations
[15]. There is still a large gap if we compare the performance with supervised
methods.

Due to these limitations of supervised and unsupervised deep learning based
approaches, in this paper we propose an unsupervised approach to estimate flow
in hazy, cluttered and dynamic environment of marine videos. The closest work
to ours is EpicFlow[21]. However, we introduce non-local median filtering [8]
in the optimization function. This allows the noise suppression and introduces
brightness constancy term in the energy optimization function to mitigate the
illumination variations. Since, there is light dispersion in the medium leading to
shadow effects we also perform preprocessing measures.

3 Proposed Methodology

In this section, we detail the components of the proposed methodology. Fig. 3
shows the pipeline of the proposed methodology.

3.1 Preprocessing

The primary focus is to get accurate optical flow estimation for complex environ-
ment where videos are of poor resolution quality, hazy in nature with uneven and
rapidly changing illumination changes. There are two major causes of haze in
surveillance videos: (i) Fog or Smog in aerial videos and (ii) Turbidity of water,
light scattering in water particle in underwater videos. In order to handle this,
we require the pre-processing step in such videos. We can improve the quality
of images either by image enhancement techniques or image restoration tech-
niques. For image enhancement, we used DehazeNet [4]. This is a CNN based
deep architecture for haze removal. Network takes a hazy image as an input, and
output is a haze free image. This method outperforms the existing haze removal
techniques which are based on many prior assumptions. Another approach we
have exploited is inspired by underwater particle physics [6]. In this paper [6],
authors proposed Simultaneous localization and mapping (SLAM) to do object
detection. In this work, Light Scattering Model produces better results when
compared with DehazeNet in case of marine videos. The qualitative compara-
tive results obtained by both methods are shown in Fig. 3. As can be seen, light
scattering is more in case of DehazeNet resulting in objects (fishes in this case)
not being clearly visible.
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i)

ii)

Fig. 2. i) Flowchart of proposed method. ii) Pipeline of the proposed flow method.
Given two frames of the video, we first perform enhancement using Light scattering
technique as proposed in [6]. Next, we use DeepMatching technique to get correspon-
dence between two frames[22] and contours of the first frame (t) is computed using
Holistic Nested Edges (HED) [26]. Finally, we combine these two cues to get dense
interpolation image which enables computation of dense correspondence field. this is
used to initialize the energy minimization framework of optical flow generation.

(a) (b) (c) 

(a) Original Image   (b) & (c)Enhanced Image using DehazeNet and Light Scattering Model 

(a) (b) (c) (d)
(a) Original Image  egdes detected by  (b) Canny Edge Detector (c) SED (d) HED 

Fig. 3. (a) Original Image. Enhanced image by (b) DehazeNet[4] and (c) Light Scat-
tering Model[6].
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3.2 Contour Detection

Motion discontinuity mainly appears on edges[21]. The proposed method is heav-
ily dependent on the conservation of motion boundaries. Conventional edge de-
tection methods like Canny [5] rely on local intensity change. This results into
a lot of spurious edges being generated as shown in Fig. 4(b). Structured edge
detection (SED) utilizes random forest ensemble which spans over all the ori-
ented edge combinations[7]. However, such hand crafted features are heavily
dependent on the nature of images. To preserve the optimal set of object bound-
aries, we have resorted to deep learning based Holistically Nested Edge Detector
(HED)[26]. In this approach, a deeply supervised fully convolutional neural net-
work is used for multi-scale and multi-level edge feature learning. Fig. 4 shows
the comparative qualitative results of aforementioned methods. In case of hazy
images, the object boundaries are not properly detected by SED as compared to
HED. All the results have been generated before applying restoration techniques
for fair evaluation and demonstrate the efficacy of HED over other compared edge
detection methods even in hazy environments.

(a) (b) (c) 

(a) Original Image   (b) & (c)Enhanced Image using DehazeNet and Light Scattering Model 

(a) (b) (c) (d)

Fig. 4. (a) Original Image. Edges detected by (b) Canny[5], (c) SED [7] and (d)
HED[26]

3.3 Energy minimization

Energy minimization in a coarse to fine manner is a popular technique to ob-
tain dense flow field. However, this approach suffers with a drawback of error
propagation. Error at coarser level can propagate across scales. Obtaining the
initial set of matches is quite costly in this manner. This can be estimated di-
rectly utilizing state of art matching methods. We utilize DeepMatch [22] to
obtain matching points between two consecutive frames. It works on a deep con-
volutional architecture designed for matching images. Fishes and humans are
highly deformable objects. DeepMatch can efficiently handle such non-rigid de-
formation and determine dense correspondences between images. Next step is
to get dense matching points from the sparse list of matches obtained by Deep-
Match. We have adopted edge aware sparse-to-dense interpolation method of
Epic Flow. Nadraya-Watson estimation [25] method is utilized for interpolation.
This method uses Geodesic Distance (GD) instead of Euclidean distance and
cost map is obtained by edge detector. In the proposed method, cost is esti-
mated by Holistically nested edge detection [26]. Since, GD estimation among
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pixels is time consuming thus authors have proposed a graph based approxima-
tion for this in [21]. It provides a smart heuristic for initialization of Optical
Flow. Further, we perform variational refinement of dense optical flow map. We
minimize the energy term defined by data term (ED), smoothness term (ES),
coupling (EC) and median term (Emed). Dequin Sun et al [23] have justified that
median filtering can significantly improve the result of optical flow field. They
have incorporated the median filtering term in classical objective function and
non-local coupling term to pertaining to the effect of data term. Flow updates
are calculated by successive over relaxation method [27].

Given an image pair F1 and F2, such that F1, F2εR
HXWX3 representing

consecutive frames at time instants t and t + 1. The goal is to estimate the
optical flow V = (u, v),VεRHXWX2. The energy is defined as the weighted sum
of data term (ED), smoothness term (ES) and non-local term (ENL). The non-
local term consists of the coupling term (EC) and median term (Emed) proposed
by Li and Osher [13]. It can be calculated as,

E(u,v) = ρDED + λ1ρsES + λ2EC + λ3Emed (1)

ED =
∑
i,j

(F1(i, j)− F2(i+ ui,j , j + vi,j)) (2)

ES =
∑
i,j

((ui,j − ui+1,j) + (ui,j − ui,j+1) + (vi,j − vi+1,j) + (vi,j − vi,j+1)) (3)

EC = (‖u− û‖2 + ‖v − v̂‖2) (4)

Emed =
∑
i,j

∑
(i′,j′)εNi,j

(‖ûi,j − ûi′,j′‖+ ‖v̂i,j − v̂i′,j′‖) (5)

Eq. 2 indicates the data term and ρD is the data penalty function. due to
color constancy, we do not need to consider the change in RGB values between
two images in the data term. λ1, λ2 and λ3 are the regularization parameters.
Eq. 3 indicates the smoothness term and ρS is the smoothness/spatial penalty
function. Charbonnier penalty function is used to penalize data and smoothness
term . Eq. 4 and eq. Eq. 5 denote the coupling and median filtering term respec-
tively. û and v̂ denote the auxiliary flow field. Ni,j denote the set of neighbors
of pixel (i, j) [23].

4 Experimental results and analysis

In this section, we present the results obtained in evaluation of the proposed
method. First, we describe the implementation and dataset details. Later, we
discuss the empirical evaluation and analyze the test results.
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4.1 Experimental setup and parameter settings

All evaluations has been carried out on a machine with 32 GB RAM, Intel Core
i7Xeon 1650 processor and Ubuntu 16 operating system. MATLAB 2017b was
used as the programming platform. The values used for the different regular-
ization parameters are λ1 = 1, λ2 = 0.10 and λ3 = 1. Neighbourhood pixels
Ni,j = 5 ∗ 5 window.

4.2 Dataset

In the past, most of the research work has focused on flow estimation on syn-
thetic images and other high quality datasets. While working on the proposed
approach, our motive was to work with challenging images of real life underwater
scenario. As per the best of our knowledge there does not exist any underwater
dataset with ground truth. We have evaluated our method on complex and chal-
lenging image sequence of Fish4knowledge [12] dataset. This dataset does not
have ground truth of optical flow. Due to lack of ground truth we will present
qualitative results on this dataset. For quantitative evaluation, we have also
tested our proposed method on popular optical flow dataset of KITTI [17].

KITTI Dataset: This dataset has been extensively used by researchers for
quantitative evaluation of various optical flow methods. KITTI 2015 dataset
consists of 200 training and 200 test scenes with moving camera and moving
objects.

The Fish4knowledge Dataset: We have evaluated our results on this data
set because this dataset comprises of real life data of ocean having challenges
like moving background of coral reefs and movement in water, highly varying
illumination due to light scattering in water particles, very low quality of videos,
crowded scenes due to randomly moving fishes and camouflage. Videos are 10
minutes long with a resolution of 320x240 and a 24-bit color depth at a frame
rate of 5 fps. Limitation of this data is that it does not have any ground truth
of optical flow. For fair evaluation, we demonstrate qualitative results obtained
on this data.

4.3 Quantitative Analysis

Most popular performance measure metrics for optical flow is the Angular Error
[2] and Endpoint Error [18]. We have compared results with three kind of flow
methods. First one is Feature based flow calculation methods like LDOF[3],
SIFTFLOW[14]. Second one is sparse to dense method Epic Flow [21] and last
one is Unsupervised deep learning based method like DD Flow [15]. DD Flow
has already outperformed the other unsupervised flow methods. Focus of our
proposed method is Underwater scenario. In most of the cases Angular Error is
less than other flow computation methods, while End-point Error has marginal
or no improvement
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Table 1. Comparison between Average Angular Error(AAE) and Average Endpoint
Error (AEE) for different optical flow methods on KITTI 2015 dataset

Methods Proposed DD Flow
EPIC
FLow

SIFT
FLow

LDOF

Average
Angular Error (AAE)

5.411669e+01 5.078307e+01 5.397299e+01 6.331552e+01 5.200370e+01

Average End Point Error(AEPE) 1.870108e+01 1.904110e+01 1.816318e+01 4.396911e-01 1.590453e+01

Fig. 5. Success cases: (a) Frame t (b) Frame t+1 (c) Proposed (d) DDFlow (e) EF (f)
LDOF (g) SIFTFlow.

Fig. 6. Failure cases: (a) Frame t (b) Frame t+1 (c) Proposed (d) DDFlow (e) EF (f)
LDOF (g) SIFTFlow.
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4.4 Qualitative Analysis

In the absence of ground truth information, we present visual results to com-
pare our method with competing methods on Fish4knowledge dataset. In Fig. 5
results of proposed technique is compared with existing methods, i.e., DDFlow
[15], EPIC Flow [21], LDOF [3], and SIFT Flow [14].

These are the cases where our refined technique delineates the moving object
accurately. We want to highlight that our approach is more robust to challenges
such as occlusions, cluttered background, large illumination change, Low con-
trast, high water turbidity, crowded and fast moving and deformable objects like
fish. In Fig. 5, row 1 shows the case of low contrast and high water turbidity.
Middle rows presents the result under cluttered back-ground, deformable ob-
ject, occluded fish and illumination change. Crowded and small fishes scenario
is in the last row. Fig. 6 has results of a few cases where our proposed method
could not perform well. When we have analysed the intermediate results of these
frames we found that there is need to refine the interpolation method to get more
accurate results.

5 Conclusion

We proposed a refined optical flow estimation for challenging underwater video
sequences. Motion information of objects is crucial for such low quality videos.
We demonstrate how to effectively exploit the edge information of image to cap-
ture motion information. We have shown significant improvement for underwa-
ter videos and comparative results for dynamic environments on road sequences.
The proposed flow estimation technique can be further extended to segment and
track the objects in hazy, cluttered and dynamic environments.
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