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A B S T R A C T

In this paper, we propose an unsupervised salient object segmentation approach using saliency and object
features. In the proposed method, we utilize occlusion boundaries to construct a region-prior map which
is then enhanced using object properties. To reject the non-salient regions, a region rejection strategy is
employed based on the amount of detail (saliency information) and density of KAZE keypoints contained in
them. Using the region rejection scheme, we obtain a threshold for binarizing the saliency map. The bina-
rized saliency map is used to form a salient superpixel cluster. Finally, an iterative grabcut segmentation is
applied with salient texture keypoints (SIFT keypoints on the Gabor convolved texture map) supplemented
with salient KAZE keypoints (keypoints inside saliency cluster) as the foreground seeds and the binarized
saliency map (obtained using the region rejection strategy) as a probably foreground region. We perform
experiments on several datasets and show that the proposed segmentation framework outperforms the
state of the art unsupervised salient object segmentation approaches on various performance metrics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Salient object detection and segmentation methods are very
important research areas in computer vision because of their
widespread applicability in various domains [1–7]. It is quite trivial
for human beings to distinguish the salient object from any kind
of complex background, or amongst a number of salient objects
whereas for a machine it is a very challenging task to identify such
objects. The problem of being able to identify and segregate the
visually important objects i.e. salient objects is defined as salient
object segmentation. Numerous techniques have been proposed in
literature for solving various aspects of object detection and image
segmentation [8–11]. However, solutions which achieve human level
accuracy and intelligence are still far from being realized. This
can firstly be attributed to the fact that the focus of most of the
saliency techniques is either on single salient object segmentation
or requirement of user interaction to start with and improve upon
successive feedback. Secondly, various attentional models identify
different regions as salient and incorrectly capture irrelevant back-
ground details. Therefore, achieving a near perfect segmentation
using saliency alone is very challenging. The problem is compounded
by the fact that in most cases the image is never composed of a
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single salient object. Finding the object in a highly cluttered envi-
ronment requires immensely intelligent processing which can be
supported by less computationally intensive saliency models. Also in
other cases, the object of interest is heavily occluded which makes its
segmentation even more challenging. These scenarios motivate the
necessity of a segmentation scheme which is able to effectively char-
acterize the object and segment it against complex background. The
need for extensive training can be overcome by designing an unsu-
pervised scheme. For the scenarios where training is prohibitive, the
proposed unsupervised segmentation is an attractive option because
it achieves performance close to deep learning methods. Unsuper-
vised segmentation requires no prior knowledge about the model to
which the object should belong instead it clusters the similar tokens
or features in the image on the basis of their similarity. Most auto-
matic unsupervised salient object segmentation algorithms make
use of the bottom-up saliency computational models [1,12,13] while
a few of them rely on the variability in shape or color/texture [14,15].

The proposed saliency based segmentation technique is aug-
mented with cues that define the characteristics of an object. In
this regard, region/object proposals have found success in recent
times [10,16-18]. Alexe et al. [3], stated that an object can be
characterized by a well defined boundary, distinctive appearance
and region uniqueness. Preserving the edge information (giving the
well defined boundary of an object) is crucial. KAZE features [19]
retain the boundary information of the objects which is an inherent
property of objectness [3]. It uses anisotropic diffusion filtering
which is based on non-linear scale space. KAZE detector thus helps
in retaining the edge information as opposed to other feature
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detectors such as Scale Invariant Feature Transform (SIFT) [20] and
its variants [21,22], which rely on the linear scale space construction.
The proposed technique is motivated by a previous work [23] where
we showed that objects can be characterized by using a combina-
tion of SIFT and KAZE features. It was found that KAZE features are
more responsive to the object boundaries, while SIFT keypoints are
mostly localized in the salient regions. The combination of SIFT and
KAZE was found to be a good mixture of features as they capture both
the saliency and boundary properties (key elements in object char-
acterization). Such features constitute just one attribute of an object
while as mentioned earlier, it constitutes a well defined boundary
and unique region with respect to the background. Uniqueness is
incorporated by considering the salient features of an object which
includes color, intensity, motion, blur, etc. Most of the bottom-up
visual attention models address these low-level features for the con-
struction of the saliency maps. If they are supplemented with a prior
macro segment regions (based on edge, surface and depth cues)
and knowledge of saliency, one can achieve improved segmenta-
tion results. In this paper, we provide an end-to-end architecture
for unsupervised salient object segmentation by augmenting the
saliency map with an edge-aware region prior map. We also propose
a novel technique for selecting an appropriate threshold for binariza-
tion of the saliency map. It involves utilizing an enhanced weighted
saliency map and binarizing it at different grayscale threshold levels.
To this end, we make use of salient keypoints to provide the fore-
ground seeds for leveraging the strength in object representation.
The key contributions can be summarized as:

1. To the best of our knowledge, this is the first work to exploit
the combination of saliency and KAZE features for effective
object segmentation. The improvement is achieved by con-
structing a region prior map which provides a macro level of
segmentation in which the regions with high saliency and high
density of salient KAZE keypoints are chosen.

2. We show that KAZE keypoints are most suited for characteri-
zation of boundaryness. To validate this fact, we also provide
an exhaustive empirical evaluation of the effectiveness of KAZE
keypoints as compared to other corner and edge based feature
detectors.

3. We propose a novel saliency cluster approach to obtain salient
keypoints. We also show that the objectness level information
is enhanced with the help of these salient keypoints as fore-
ground seeds. The salient KAZE keypoints are supplemented
with texture keypoints obtained by SIFT on the Gabor con-
volved texture map, further strengthening our unsupervised
segmentation. These contributions result in improvement in
segmentation performance and outperforming state of the art
unsupervised segmentation schemes while closing the gap
with deep learning based methods.

Overall structure of the paper is as follows. Background about the
related works is provided in Section 2. The proposed methodology is
explained in Section 3. Results and discussion are given in Section 4
followed by conclusion in Section 5.

2. Related work

In this section, we briefly describe the classical methods which
utilize saliency and regional features for salient object segmentation.

2.1. Saliency-based methods

In Ref. [24], the authors focus on two relevant problems in
saliency detection: salient object detection and fixation prediction.
The saliency detection and fixation algorithms are merged to
generate a saliency map. They address the conflict that arises in

choosing the salient object identified by the fixation models due to
various design biases involved in the construction of the saliency
models. A pool of object candidates obtained by Ref. [9] is ranked
based on the density of fixation points over them which would
essentially result in best salient candidates. Hence, the authors estab-
lish a conjunction between human fixations and the saliency models.
Another relevant paper in this context [25], entails an automatic
object segmentation method using probabilistic edge map with the
help of static and motion cues. The edge map is converted to a polar
form assuming the fixation points as the poles. The segmentation
results are iteratively improved by changing the probabilities in the
edge map. As the image is not composed of a single salient object and
different objects appear as salient to different people, the authors
rely on the fixation points for correctly segmenting the object.
Cheng et al. [1] propose a bottom-up data driven saliency detec-
tion approach in which global contrast is incorporated to seamlessly
highlight the contiguous salient regions in the image. In Ref. [26], the
authors integrate context and shape prior for salient object segmen-
tation. Instead of just accounting for the regional saliency alone, the
contextual knowledge about the region is also considered. The object
prior is calculated by using a Pb detector [27] to accentuate the edges
around the object boundaries by gap filling. The final segmentation
is obtained by applying an energy minimization framework. Authors
in Ref. [28] propose a saliency detection framework using graph
based manifold ranking. The image is partitioned in a graph and sim-
ilarity is computed with respect to the foreground and background
cues. Each node on the boundary prior is considered as background
labeled query. The saliency map is computed based on the rele-
vance scores given to the query labels (foreground/background).
The binary segmentation of the foreground nodes gives the salient
queries. In Ref. [29], Liu et al. propose a supervised salient object
detection approach. The authors employ local, global and regional
saliency features to identify the salient object. Conditional Random
Field learning is incorporated for the segmentation. In Ref. [30], an
exhaustive empirical comparative analysis between various state of
the art saliency detection methods and fixation models has been pro-
vided. The models used here have been tested against 7 datasets to
show an effective evaluation. In Ref. [31], the authors utilize a graph
based salient object ranking method and associate a relationship of
the salient regions with the background features.

We propose an unsupervised saliency based segmentation
approach in this paper similar to Refs [1,26] and achieve superior
performance to these approaches. Refs. [24,29] employ a learning
based framework. The method used in Ref. [24] is heavily dependent
on the fixation models and on the choice of the segmentation tech-
nique to assign saliency score to the salient segments. We exploit
the strength of low-level features like SIFT and KAZE with saliency
for getting efficient salient object segmentation. Similar to the
analogy in Ref. [31] that background features can assist in improv-
ing the segmentation accuracy we incorporate the boundary features
of the salient objects to retain the distinctiveness of the salient
objects.

2.2. Object proposal-based methods

Since last few decades, the research concentrated on generating
good object hypotheses has got a lot of thrust. Object proposals are
either rectangular bounding boxes enclosing the objects or the regions
having higher probability of finding an object. The object propos-
als aid in segmentation, recognition and detection tasks. In Ref. [32],
a highly effective and robust technique for generating and merging
object hypotheses is discussed. The effectiveness can be corroborated
by the fact that it uses a greedy, hierarchical grouping algorithm as in
Ref. [17] using stronger region features than Refs. [10,16] for captur-
ing object proposals. Random Forest based learning is utilized at each
stage of the hierarchy to merge stable regions. Authors in Ref. [18]
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pioneer the object localization task by introducing objectness mea-
sure which steers the localization task towards objects based on the
saliency cues. Objectness measure gives a set of bounding boxes which
cover the object regions better as compared to contemporary tech-
niques which had maximum coverage on the background regions. It
helps in drastically reducing the number of false positive windows
returned by most of the class-specific object detectors or blob detec-
tors. In the last few years, despite of having significant improvements
in the algorithms generating efficient bounding boxes [33–35], object-
ness measure stands out as a classic method for obtaining object
proposals. Another paper [17] has gained immense popularity in this
domain which characteristically embed various sampling strategies
for the bounding boxes to generate good object locations.

Apart from bounding boxes, region proposals also serve as good
object location candidates. The high level performance of region
proposals can be attributed to two reasons. Firstly, pixel-level clas-
sification (candidate regions) is better than window classification as
it uses additional some other cues for achieving the goal. Secondly,
the brute force nature of window classification is computationally
expensive. Authors in Refs. [10,16] have done seminal work by gen-
erating strong region proposals. They rely on regional features like
color similarity, texture similarity, edge density, size, etc. which drive
the object localization task.

This paper utilizes a region prior map to select the salient
macro segments. We do not consider the bounding box based

approaches [17,33-35] for selection of regions. Authors in Ref. [16]
generate an overcomplete set of segments taking various per-
mutations of seed values. Our method incorporates the approach
in Ref. [36] to generate initial segments and create independent
segments.

3. Proposed methodology

In this section, we give a detailed overview of the proposed seg-
mentation scheme. The workflow of the proposed method is shown
in Fig. 1. In the following subsections, we describe the components
of the proposed method in detail.

3.1. Macro segmentation—region prior map based on occlusion
boundaries

Occlusion edges help to separate the cluttered regions (one region
occluding other) in the scene. As opposed to occlusion edges, non-
occlusion edges are due to shadow casts, reflectance or material/
surface changes. Thus, occlusion information has great potential
in segregating objects from the background. We have utilized the
regions obtained by occlusion boundaries [36] to form a region
prior map that provides a macro-level segmentation. The inherent
assumption in Ref. [36] is that the image is a 2D projection where
the objects get occluded by other objects of a otherwise spatially

Fig. 1. Workflow of the proposed method.
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separated 3D space. It recovers the boundaries and depth ordering
of salient objects thus providing a sense of figure/ground separa-
tion. Confidence assignment is computed for the boundaries as well
as regions. The boundary estimation uses color, surface, depth and
Gestalt cues. The initial over-segmentation is constrained by the soft
probabilistic boundary map which helps in the removal of weak
boundaries resulting in larger regions. The result obtained after this
preprocessing is illustrated in Fig. 2. We utilize these regions to
select the final candidate regions for the binarized saliency map as
explained in the next subsection.

3.2. Salient macro segment selection

A region rejection strategy (Algorithm 1) based on occlusion maps
is used to remove the non-salient macro segments from wrongly
being classified as salient. For this, we utilize an enhanced weighted
saliency map (Section 3.2.1) and binarize it at different grayscale
threshold levels to select an appropriate adaptive threshold for
binarizing the saliency map. We select only those region proposals
which have high percentage of saliency and high density of salient
KAZE keypoints. The density of keypoints indicating the number of
responses per unit area and the discriminative power of the inten-
sity patches (characterized by high salient regions) captures high
distinctiveness of the regions [37]. KAZE features are computed
based on non-linear scale space construction (Eqs. (1)–(2)) which
otherwise helps in retaining the edge and boundary information
which gets lost in linear filtering based features. Non-linear filtering
is based on a diffusion coefficient which computes the concentra-
tion gradient of gray-values in the image. If the diffusion tensor is
constant over the whole image it is called homogeneous/isotropic
blurring (as in the case of linear filters) and if it is space-dependent
then it is termed as inhomogeneous/anisotropic blurring (non-linear
filters) (refer Section A.1.2). The non-linear diffusion equation is
given as:

∂U
∂t

= ∇.
{
(c (x, y, t) .∇ (U))

}
, (1)

Fig. 2. Region prior map using occlusion edges.

where {∇.} is the divergence operator, ∇(U) is the gradient of the
original image U, c is the conductivity function and t is the scale
parameter. The conductivity function c, is represented as a gradient
(Eq. (2)) which helps in retaining edges while smoothening the
non-edge regions. Conductivity function c, is given as:

c (x, y, t) = g
(∣∣∇Us (x, y, t)

∣∣) , (2)

where ∇Us is the gradient of a Gaussian smoothed original image
U and s is representative of the amount of blur. Other vari-
ants of the conductivity functions chosen in Ref. [38], promote
high contrast, wider regions or smoothening on both sides of the
edges.

Algorithm 1. Algorithm for region rejection.

KAZE keypoints are highly localized around the object bound-
aries, thus making them a suitable choice for segmentation (an
empirical evaluation of the characterization of the boundaryness
measure using KAZE features as compared to other edge-based fea-
ture detectors is provided in Appendix A. The analysis clearly demon-
strates the superiority of KAZE features for boundaryness). We use
this characteristic property to obtain a threshold for binarizing the
saliency map. The threshold therefore does not need to be set a priori.
We use the fact that a sharp decline (large gradient) in the number
of KAZE keypoints as a function of grayscale threshold Gi and region
threshold Tj is a good indicator of the operating point for binariza-
tion. Using this value of cut-off threshold we obtain all the salient
primitive regions in the binarized salmap containing high density
of KAZE keypoints. The effectiveness of the computed threshold is
demonstrated by an empirical comparative analysis with the thresh-
olding techniques used in state of the art salient object detection
methods (Section 3.3, Fig. 6).

3.2.1. Weighted saliency map
We utilize the Principal Component Analysis (PCA) based

weighted combination of two state-of-the-art saliency map estima-
tion methods: Discriminative Regional Feature Integration (DRFI [39])
and Hierarchical Saliency (HS [40]) approaches. The choice behind
these two saliency maps lies in the fact that DRFI selects distinctive
regional features using regression scheme based on the contrast and
backgroundness details at multiple levels of segmentation. HS is able
to highlight the salient objects at multiple granularity levels. In the
PCA based method, we obtain a column vector from each saliency
map which is used to calculate a covariance matrix. We normalize
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Fig. 3. (a) Original image, (b) weighted fused saliency map, (c) final binarized saliency map based on region rejection strategy.

Fig. 4. Performance evaluation of the fusion strategies.

the column vector corresponding to the largest eigen value by divid-
ing with the mean of eigen vectors. Normalized eigen vector values
act as the weights. The linear combination of the respective saliency
maps with these weights gives the weighted fused saliency map
(Fig. 3 (b)). To motivate the use of PCA based weights we compare it
with the averaged fusion of the saliency maps and report the perfor-
mance boost achieved by PCA based weights over simple averaging
results. We report the average precision, recall, F-Measure and MAE
(mean absolute error) rates on MSRA-1000 dataset using these fusion
strategies in Fig. 4. PCA based combination achieves 92.83% preci-
sion and 90.99% recall while averaging gives 91.28% precision and
89.94% recall. As compared to the methods before fusion, F-Measure
increases from 0.8002 (DRFI) and 0.7954 (HS) to 0.8912 (DRFI + HS-
PCA) and there is an increase in precision rate by 7% over DRFI and
10% over HS. The reason for the performance gain is due to the fact
that extracting the principal components results in minimization of
redundancy and the selection of self adaptive weighted coefficients
reduces the MAE (mean absolute error) by a margin of 3% as com-
pared to direct averaging methods. MAE is given as the average of
pixelwise absolute difference between the binary ground truth and
the computed saliency map [41].

During experimentation, we found that utilizing these saliency
maps alone as the initial input to any segmentation method is not
able to clearly segment the objects and retain the object boundaries
(Section 4.2). It is observed that although the use of stronger saliency
maps is able to detect the salient objects pretty well but their
results obtained on graph based segmentation methods [1] (Salien-
cyCut: an improvised version of iterative GrabCut for segmenting
salient objects) are not good. Thus, we show that our proposed
segmentation method has a clear advantage over saliency map only
being used as initial masks for segmentation.

3.3. Modified iterative grab-cut segmentation

In addition to binarized saliency map as a mask for segmen-
tation we provide object features as foreground seeds. First, we
perform super-pixel segmentation to obtain a set of superpixels.

Fig. 5. Salient KAZE and TEXTURE keypoints inside the saliency cluster. Red denotes
the KAZE keypoints and green denotes SIFT keypoints.
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Fig. 6. (a) Original image, (b) thresholding using mean [43], (c) thresholding using Otsu’s method [45], (d) binarization by our proposed method using 3D gradient plot.

Using, the region rejection strategy as explained in Section 3.2 we
obtain the final binarized saliency map. We then form a group of
salient superpixel cluster, saliency cluster {SCi}K

i=1, containing all the
superpixels which are highly salient (more than 50% salient) using
the binarized saliency map. We then calculate the SIFT keypoints
on the original image. An orientation histogram is formed using the
orientations of the SIFT keypoints. Using the bin centers as the ori-
entations, the image is convolved with Gabor filter giving a texture
map. Next, the SIFT keypoints are computed on the texture map
and only those keypoints which lie in the saliency cluster SCi are
retained and termed as the salient texture keypoints SalientTexture.
Similarly, the final salient KAZE keypoints SalientKAZE retained are the
ones which lie inside the saliency cluster. Salient keypoints refer to
the keypoints with high saliency score (lying in the saliency cluster).
These salient keypoints (texture and KAZE) are used as foreground
seeds in the iterative grab-cut segmentation [42]. The binarized
saliency map, SGi

B is used as the probable foreground region prior for
segmentation. The inclusion of these keypoints enhances the object-
ness measure compatibility of the proposed features thus, resulting
in robust salient object segmentation (Fig. 5). The algorithm for the
selection of the foreground seeds in iterative grabcut segmentation
scheme has been detailed in Algorithm 2.

Algorithm 2. Modified iterative grab-cut segmentation.
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Fig. 7. Segmentation results obtained by the proposed method: single salient object per image in (a) MSRA1000 dataset, (b) SOD dataset; multiple salient objects per image in
(c) PASCAL-1500 dataset, (d) ECSSD dataset.

Most of the saliency detection methods assume a fixed thresh-
old for binarizing the saliency map [1,43]. They assume the threshold
as a value between [0 and 255] where the maps give good preci-
sion and recall rates. These approaches however require the ground
truth to be known beforehand. This choice of threshold introduces a
dataset bias. In adaptive thresholding, authors utilize some statisti-
cal measure like mean [43], variance [44] (as used in Otsu’s method)
for the saliency map binarization. This may not work in the case
of highly cluttered and occluded cases. In our proposed method,
we have removed such dataset biases by making threshold as a
function of saliency as well as density of salient object features. As
illustrated in Fig. 6 (for MSRA-1000 dataset) mean and Otsu’s thresh-
old fail to clearly binarize the salient object (give some redundant
background as well). Another strong aspect in the proposed segmen-
tation scheme is that we have also taken salient texture keypoints
along with salient boundary keypoints resulting in a well defined
boundary (given by KAZE) and distinctive appearance (combined

by texture and saliency in our case) which are the characteristic
features of an object. Since, this method makes use of the occlu-
sion reasoning for the region prior map, every object is thoroughly
analyzed even if it is partially visible and is able to label it as a
single salient object. Prior methods found this challenging as they
couldn’t recognize object with multiple color and positioning as a
single entity because of the discontinuity/non-connectivity of the
object.

4. Experimental results and analysis

4.1. Experimental setup

The experiments were performed on a 32 GB RAM machine
with Xeon 1650 processor and 1 GB NVIDIA Graphics Card. Matlab
2015b was used as the programming platform. The evaluation of
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Fig. 8. Corresponding intermediate results for i) MSRA-1000, ii) SOD, iii) PASCAL-1500 and iv) ECSSD datasets: (a) original images, (b) ground truth, (c) region prior map obtained
from the occlusion boundaries, (d) weighted saliency map, (e) final binarized saliency map obtained from the region rejection strategy in Algorithm 1. This binarized saliency map
is given as a probably foreground region to the iterative grabcut algorithm.

the proposed methodology was performed on the publicly available
saliency datasets: MSRA1000 [43], SOD [46], PASCAL-1500 [47] and
ECSSD [40]. MSRA1000 dataset predominantly contains single salient
object per image. SOD dataset contains 300 images from the Berkeley
segmentation dataset. SOD and PASCAL-1500 are quite challenging
saliency datasets. PASCAL-1500 dataset contains a subset of selected
images from PASCAL VOC segmentation challenge dataset [48]. It
contains multiple salient objects in the images appearing at various
scales and locations in cluttered background which makes it chal-
lenging. ECSSD dataset is another recently introduced challenging
dataset. It contains structurally complex images which are seman-
tically meaningful. In the following subsections, we discuss the
results and provide a comparative analysis with the state of the art
methods.

4.2. Segmentation results

Since, we have proposed an unsupervised saliency and object
keypoint driven segmentation scheme, we have done comparative
analysis with saliency based segmentation methods and automatic
segmentation schemes. Fig. 7 shows the segmentation results on
few images from the tested datasets using the proposed approach.
To put our work in perspective, we show that the proposed
technique gives segmentation results close to deep learning based
approaches.

The intermediate results consisting the region prior map,
weighted saliency map, final binarized saliency map are shown
in Fig. 8. This region map is used to obtain a 3D gradient
map (Algorithm 1). The cut-off threshold values obtained using
Algorithm 1 are used to get the binarized saliency map. So, rather
than choosing a threshold based on fixed or adaptive threshold, this
is a better measure for computing threshold as the object boundaries

are preserved which ordinarily get lost when mean or variance val-
ues are used for thresholding. The number of region thresholds is
chosen in the range [0.1–1] with a step size of 0.1. The number of
gray level thresholds is set between [0 and 255] with 25 interme-
diate levels. In our experiments we found that these values provide
the best results. The binarized saliency map obtained by the region
rejection strategy is used as the probable foreground region in the
iterative grabcut segmentation scheme. We use SLIC superpixel seg-
mentation scheme [49] to obtain the salient keypoints (Section 3.3).
The initial number of superpixels was set to 200. The superpixels
containing more than 50% salient pixels were chosen which forms
the saliency cluster. We use the KAZE features [19] implementa-
tion and OpenCV 3.1.0 [50] for setup of KAZE. For calculating SIFT
features we use VLFeat [51] implementation. The number of bins
for the orientation histogram in the iterative grabcut segmentation
(Algorithm 2) is set to 10. The parameter values chosen for the Gabor
filter are k: 8, h: 0, x: 0, c: 0.5, s: 1. The results of the SLIC based
segmentation giving the saliency cluster and salient keypoints are
shown in Fig. 9.

Fig. 10 shows the output of the proposed segmentation scheme
as compared to other approaches. It can be observed that the
shadow of the skater’s image and the green foliage (MSRA-1000
dataset) forms the part of the final segmented image with most
of the methods [1,26,39,40,43,44,52-54]. While it is not the case
with the proposed method. The reason is that the methods in
Refs. [1,26,53,54] detect the shadow as a salient image which is
not a part in the saliency ground truth. Similar observation can
be made for the green foliage (skater’s image) which is labeled as
salient by Refs. [1,26,39,40,44,52-54]. Similarly, most methods fail
to segment out all the cyclists correctly (PASCAL-1500). Congruent
analogies can be drawn from other images. For a quantitative evalua-
tion comparing prior works, we use the following standard objective
measures, Probabilistic Rand Index (PRI), Variation of Information
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Fig. 9. (a) and (c): Saliency cluster based on regions obtained by SLIC based segmentation on MSRA-1000 and SOD datasets respectively; (b) and (d): salient keypoints in the
saliency cluster on PASCAL-1500 and ECSSD datasets respectively (KAZE keypoints: red and TEXTURE SIFT: green) given as the foreground seeds.

(VoI), Global Consistency Error (GCE) and Boundary Displacement
Error (BDE) [55]. The range of PRI and GCE is [0, 1] and range of
VoI and BDE is [0, ∞]. We report the average value of these mea-
sures on these datasets. Higher value of PRI and lower values of GCE,
VoI and BDE indicate good performance in segmentation. We utilize
the saliency maps obtained by FT [43], SEG [52], RC [1], DRFI [39],
HS [40], PISA [54], MDF [56], DeepSaliency [57] as the initial masks
to iterative grabcut for salient objects [1] (SaliencyCut) and report
their performance evaluation with our method. In order to gener-
ate the saliency maps by the deep learning methods, the publicly
available Matlab code [56,57] was run on a system with NVIDIA
GeForce GTX Titan X GPU, 3072 cores and Intel Xeon 3.5 GHz pro-
cessor on Ubuntu 14.04, Matlab 2015b. The publicly available code
for SaliencyCut [1] was used and run on Visual Studio 2012 inte-
grated with OpenCV 3.1.0. SaliencyCut uses the computed saliency
maps and aids in automated salient object segmentation and doesn’t
require any manual annotation to be provided. Iterative runs of

GrabCut [42] with adaptive fitting reduce the noise which might get
incorporated in the saliency map computation thus resulting in a
better and robust segmentation. Our method was able to outperform
the prior methods on MSRA1000 dataset (Table 1) in terms of VoI.
The second best method [57] lags by a margin of 0.0153 (VoI value).
Deep learning methods outperform for the other three indexes PRI,
GCE and BDE values (PRI: higher by a margin of 0.0154, GCE: higher
by a margin of 0.0175 and BDE: higher by 0.0773). In the case of SOD
dataset (Table 2), the proposed method lags behind the DeepSaliency
method [57] (PRI: less by 0.0642, GCE: less by 0.0011 and BDE: less
by 0.4958) but for VoI index proposed method performs much bet-
ter as compared to other methods. For Pascal-1500 dataset (Table 3)
the proposed method is able to outperform in terms of VoI and GCE
by a margin of 0.0044 and 0.0169 respectively with respect to the
second best. In the case of ECSSD (Table 4), the proposed method
is able to outperform the other comparable methods in terms of
low VoI, GCE and BDE. Low values of BDE suggest that the contours
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Fig. 10. (a) Original image, (b) ground truth, (c) frequency tuned + SaliencyCut [43], (d) context and shape prior based segmentation [26], (e) SEG + SaliencyCut [52], (f)
RC + SaliencyCut [1], (g) DRFI + SaliencyCut [39], (h) HS + SaliencyCut [40], (i) salient Harris + star shape prior [44], (j) QCUT [53], (k) PISA + SaliencyCut [54], (l) MDF +
SaliencyCut [56], (m) DeepSaliency + SaliencyCut [57], (n) proposed approach.

are preserved better. It is observed that the proposed method (com-
bination of DRFI + HS(PCA) along with salient keypoints) is able
to outperform the unsupervised salient object segmentation tech-
niques considerably while also closing the gap with CNN-based
techniques [56,57], reducing the computational overhead of train-
ing with a huge corpus of image data with pixel-level segmentation
annotations. It significantly outperforms the DRFI and HS saliency
schemes when used individually as priors for segmentation. The
results indicate that the proposed scheme is consistently able to give
good results on the datasets having large variation in terms of num-
ber of salient objects, size of salient object and contrast between
them. Furthermore, in more challenging datasets like PASCAL-1500

and ECSSD it is able to characterize the salient objects and also retain
the object boundaries. The average execution time of the proposed
unsupervised segmentation framework on MSRA-1000 dataset
(400 × 300 pixels) including the overhead of saliency computation,
region prior map construction, low-level features computation
(foreground seeds) is provided in Table 5.

5. Conclusion

We have proposed an automatic unsupervised salient object seg-
mentation approach using saliency and object features. The prior
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Table 1
MSRA1000: performance analysis.

Method PRI VoI GCE BDE

FT + SaliencyCut [43] 0.8704 0.5483 0.0897 16.3453
CB [26] 0.9334 0.2912 0.0433 7.3414
SEG + SaliencyCut [52] 0.8813 0.4789 0.0722 13.4110
RC + SaliencyCut [1] 0.9386 0.2836 0.0434 6.7060
DFRI + SaliencyCut [39] 0.9346 0.2348 0.0492 4.9232
HS + SaliencyCut [40] 0.9105 0.2592 0.0432 4.9284
Salient Harris + star shape prior [44] 0.9396 5.4231 0.8256 0.3452
Saliency + random walk [58] 0.9276 8.5423 2.2763 0.2934
Active contour [59] 0.7982 0.6221 0.1052 14.2343
QCUT [53] 0.9023 0.2843 0.8772 4.3293
PISA + SaliencyCut [54] 0.9345 0.2668 0.0528 4.2384
MDF + SaliencyCut [56] 0.9584 0.1837 0.0348 0.2532
DeepSaliency + SaliencyCut [57] 0.9606 0.1429 0.0297 0.2040
Proposed method 0.9452 0.1276 0.0472 0.2813

The value in bold indicates the highest PRI value and lowest values of VoI, GCE and
BDE for Tables 1–4.

Table 2
SOD: performance analysis.

Method PRI VoI GCE BDE

FT + SaliencyCut [43] 0.8342 0.6777 0.7234 15.1412
CB [26] 0.8763 0.0235 0.0833 7.7664
SEG + SaliencyCut [52] 0.8412 0.5437 0.0857 14.5728
RC + SaliencyCut [1] 0.9137 0.3125 0.0683 8.0542
DFRI + SaliencyCut [39] 0.8724 0.5278 0.2339 8.2343
HS + SaliencyCut [40] 0.8612 0.5582 0.2623 7.2345
Salient Harris + star shape prior [44] 0.8772 9.4231 0.1296 7.5673
Saliency + random walk [58] 0.8523 8.2323 3.7225 8.3884
Active contour [59] 0.7198 0.9178 0.1447 31.9205
QCUT [53] 0.8623 0.6792 0.8232 7.1298
PISA + SaliencyCut [54] 0.9237 0.5239 0.3776 7.2387
MDF + SaliencyCut [56] 0.9387 0.0287 0.0602 6.7773
DeepSaliency + SaliencyCut [57] 0.9476 0.0176 0.0523 6.2887
Proposed method 0.8834 0.0133 0.0534 6.7845

The value in bold indicates the highest PRI value and lowest values of VoI, GCE and
BDE for Tables 1–4.

Table 3
PASCAL-1500: performance analysis.

Method PRI VoI GCE BDE

FT + SaliencyCut [43] 0.6927 7.2998 0.7234 15.1412
CB [26] 0.7623 0.3476 0.9827 10.5839
SEG + SaliencyCut [52] 0.7458 0.9376 0.5482 11.3872
RC + SaliencyCut [1] 0.7876 0.3387 0.9878 6.7284
DFRI + SaliencyCut [39] 0.8019 0.3498 0.7882 4.4599
HS + SaliencyCut [40] 0.7965 0.4534 0.8712 4.0923
Salient Harris + star shape prior [44] 0.7989 0.2378 0.1998 4.7656
Saliency + random walk [58] 0.8176 0.5423 2.2265 5.3434
Active contour [59] 0.6892 6.7223 5.6723 26.7254
QCUT [53] 0.8012 0.3454 2.3776 5.0234
PISA + SaliencyCut [54] 0.8097 0.4512 0.3487 4.3498
MDF + SaliencyCut [56] 0.8432 0.4387 0.0498 3.2934
DeepSaliency + SaliencyCut [57] 0.8472 0.0400 0.0401 3.0972
Proposed method 0.8364 0.0356 0.0232 3.2465

The value in bold indicates the highest PRI value and lowest values of VoI, GCE
and BDE for Tables 1–4.

region map is obtained using occlusion boundaries. A region rejec-
tion strategy is presented to reject the less salient regions. An
iterative grabcut is then provided with salient boundary (KAZE)
and salient texture (SIFT) keypoints as the foreground seeds. The
proposed method is shown to outperform the unsupervised state
of the art techniques while closing the gap with state of the art
CNN-based approaches with exhaustive experiments on numerous
datasets. Additionally, the efficacy of KAZE features over other edge
based and corner features for the characterization of boundaryness
is demonstrated.

Table 4
ECSSD: performance analysis.

Method PRI VoI GCE BDE

FT + SaliencyCut [43] 0.7342 0.9882 0.7824 19.2991
CB [26] 0.7823 0.2332 0.1833 7.4552
SEG + SaliencyCut [52] 0.7934 0.2454 0.1857 17.1224
RC + SaliencyCut [1] 0.8002 0.3235 0.0883 9.0568
DFRI + SaliencyCut [39] 0.8343 0.1229 0.0816 8.0128
HS + SaliencyCut [40] 0.8354 0.2893 0.1993 8.0228
Salient Harris + star shape prior [44] 0.8232 7.2321 0.1221 6.5672
Saliency + random walk [58] 0.8076 9.3776 5.1213 5.2974
Active contour [59] 0.6523 0.8233 0.1776 25.9105
QCUT [53] 0.8382 0.7283 0.1882 8.7823
PISA + SaliencyCut [54] 0.8513 0.0556 0.0968 6.0002
MDF + SaliencyCut [56] 0.8847 0.0423 0.0876 5.9217
DeepSaliency + SaliencyCut [57] 0.8876 0.0413 0.0822 5.2242
Proposed method 0.8737 0.0376 0.0789 4.7845

The value in bold indicates the highest PRI value and lowest values of VoI, GCE and
BDE for Tables 1–4.

Table 5
Average execution time of the proposed method on MSRA-1000 dataset.

Steps
Region foreground
prior Threshold seeds
map Saliency obtained (SIFT on Iterative

Steps computation map by region Gabor grab
using computation rejection texture cut
occlusion strategy map
boundaries +

KAZE)
Average

cost (in s) 10.23 12.11 11.04 5.36 1.03

Total cost (in s): 39.77

Appendix A. Characterization of boundaryness

Local features give efficient image representation and accentu-
ates the details in the image. They are generally concentrated on
the local areas in the image including boundary segments, curva-
ture and corner points. They give keypoints which are either corners
or blobs. The keypoints thus obtained rarely get localized near the
edges. In case we need to obtain the corner points on edges gener-
ally the corner points near the edges (given by Canny detector) are
selected. The strong edges are mostly located on the object bound-
aries. Edges change their appearance as they change their locations
when the image is scaled over multiple scales [60]. In Ref. [60],
authors introduce edge based features (EDGELAP KP) which focuses
on selecting keypoints along edges. The edge appearance is cap-
tured by building a scale space representation. Laplacian responses
are calculated for several scales around the edge points to select the
extremum points. This EdgeLap detector essentially uses a Gaussian
scale space due to which the edges lose their appearance due to
blurring. Other edge specific interest point detectors include edge-
foci interest points (EFI KP) [61] and edge-based region keypoints
(EBR KP) [62]. We also compare KAZE keypoints with Context Aware
Keypoint Extractor keypoints (CAKE KP) which give keypoints corre-
sponding to local structures in the image based on the image context.
KAZE features [19] build up a non-linear scale space which is robust
to noise and increases localization accuracy. It maintains the object
boundaries. We have compared the robustness of KAZE keypoints
against various edge based keypoint detector and corner detectors to
show the effectiveness of KAZE particularly for maintaining bound-
aryness. In the first set of experiments we see the distribution of
KAZE keypoints around the gradient responses at various scales. In
the second set of experiments we compare the effectiveness of KAZE
keypoint responses with other popular edge based detectors around
the boundary regions. In order to explain the effectiveness of KAZE
against other techniques, we provide a comparison of linear scale
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space and non-linear scale space construction followed by an empiri-
cal evaluation strengthening the theoretical justification to bring out
their effectiveness in boundary representation.

A.1. Scale space representation

A.1.1. Linear scale space
Given the initial image f(x, y), first we treat it with zero order scale

space (i.e. Gaussian scale space). In such a representation, signifi-
cant image structures coexist in the smoothened regions which have
high contrast with respect to their background and are highly dis-
tinct from their surroundings. Such structures are called blobs [63].
Detection of such image structures and relation between them at dif-
ferent scales along with scales at which these arise result in salient
features being segmented out at coarser scale.

The following scale space representation is obtained for the given
image, L : R2 × R → R such that:

L( • ; t) = K( • ; t) ∗ f ( • ), (A.1)

where, t is scale parameter and K denotes kernel of successively
increasing width, and

L( • ; 0) = f ( • ). (A.2)

In terms of differential equation, L can be described by the diffu-
sion equation:

∂tL =
1
2

∇2L, (A.3)

where ∇ denotes the gradient operator. Causality property ensures
that new level surfaces do not spur out when the scale parameter is
increased. Homogeneity and Isotropy property essentially dictates the
treatment of all spatial points and scale levels in a similar manner.
Linearity and Shift Invariance properties are ensured in the scale space
construction [64]. It can be shown that the kernel K( • ; t) assumes the
form of Gaussian kernel [65]. Thus, Eq. (A. 1) can be rewritten with a
Gaussian kernel G : R2 × R+ → R as:

G(x, y; t) =
1

2pt
e−(x2+y2)/2t. (A.4)

Assuming t = s2, the heat diffusion Eq. (A. 3) becomes:

∂L
∂s2

=
1
2

∇2L

⇒ ∂L
∂s

= s∇2L[∵ ∂s2 = 2s∂s], (A.5)

which result to (using Eq. (A. 1)):

∂( f ∗ G)
∂s

= s∇2( f ∗ G)

⇒ f ∗ ∂G
∂s

= s f ∗ ∇2G (A.6)

⇒ ∂G
∂s

= s∇2G.

The interest points are the local maxima in the scale space of
Laplacian of Gaussian (LoG). The Laplacian pyramid is obtained using
the Difference-of-Gaussian (DoG) function which acts as a band pass
filter. DoG function is given as:

D(x, y,s) = (G(x, y, ks) − G(x, y,s)) ∗ I(x, y). (A.7)

This equation represents difference of two nearby scales sep-
arated by a constant multiplicative factor k. The scale normal-
ized Laplacian of Gaussian is s∇2G. Drawing analogy from the
heat equation: s∇2G = ∂G

∂s
and using the approximation, ∂G

∂s
≈

G(x,y,ks)−G(x,y,s)
(kss)

. We deduce that:

G (x, y, ks) − G (x, y,s) ≈ (k − 1)s2∇2G ≈ (k − 1)s(LoG). (A.8)

The factor (k − 1) in the equation is a constant over all scales and
therefore does not influence extrema location. The next task is to
detect the accurate keypoints in the image that is done by comparing
the keypoints with their neighbors. Thus, the point of extrema in DoG
as selected in Ref. [20] will have a corresponding set with addition
of scale space points to incorporate qualitative information about
the image. As we move from finer to coarser scales, linear diffusion
filtering dislocates the image structures. So, we need some localiza-
tion method for these structures. This can be achieved by using the
Taylor expansion of the scale space function or DoG (Difference of
Gaussian), D(x, y,s), shifted so that origin is at the stable keypoint.

A.1.2. Non-linear scale space
Linear diffusion does not preserve the edge information and

smoothens the entire image (I) uniformly (Eq. (A. 4)). Higher ‘s ’ value
blurs over a wider radius. This also results in a larger kernel matrix to
capture most of the function’s energy. The aim is to capture the max-
imum area of the object with minimal overlap with other objects.
Non-linear diffusion on the other hand reduces noise and preserves
the contours/boundaries in the images. The diffusion coefficient is
adaptive to the image data and remains negligible in the case of
object boundaries. Diffusion is a physical process which brings equi-
librium in the concentration differences for a system. Using Fick’s
law [66]:

j = −D.∇u, (A.9)

where j is the flux, ∇u is the concentration gradient and D is the ten-
sor value. Since, diffusion involves neither creation nor destruction
of mass, using the equation of continuity (conservation of mass) one
obtains:

∂tu = −(∇.j), (A.10)

where ∇.j denotes the divergence of the flux. From Eq. (A. 9) we get:

∂tu = − (∇.(−D.∇u)) . (A.11)

Replacing tensor value ‘D′ by scalar diffusivity ‘d′ results in:

∂tu = (∇.(d∇u)) . (A.12)

The scalar diffusion constant ‘d′ can be replaced by a scalar val-
ued function ‘g|∇u|′ which is the gradient of the gray levels in the
image [38]. Hence we have:

∂u
∂t

= ∇. (g(|∇u|)∇u) , (A.13)

where g(|∇u|) is given as,

g(|∇u|) = C(x, y,s) (A.14)

where C is the conductivity equation and s gives the amount of blur.
In non-linear diffusion equation [38], Perona and Malik used C(x, y, t)
as a function of the gradient magnitude (isotropic diffusion). The
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value of C chosen in this way reduces the diffusion at the location of
edges, encouraging smoothing within a region instead of smoothing
across boundaries. Thus, C is chosen as:

C(x, y, t) = g(|∇Ls (x, y, t)|), (A.15)

where ∇Ls (luminance function) is the gradient of a Gaussian
smoothed original image L. Instead, one can choose C(x, y, t) (similar
to ‘g′ as proposed in Ref. [67]) such that:

g =

⎧⎪⎪⎨
⎪⎪⎩

1
2 , |∇Ls |2 = 0

1 − exp
(
− 3.315

(|∇Ls |/k)8

)
, |∇Ls |2 > 0. (A.16)

Thus, we have two different diffusion equation given by:

∂tL = div
[

1
2

•∇L
]

(A.17)

corresponding to the points in the scale space, where |∇Ls |2 = 0, and

∂tL = div
[{

1 − exp
(

− 3.315
(|∇Ls |/k)8

)}
•∇L

]
(A.18)

corresponding to the points in the scale space, where |∇Ls |2 > 0.
Here, div denotes the divergence operator. We show the distribu-
tion of KAZE keypoints along the gradient images of non-linear scale
space (KAZE) in Fig. A.11. The plot of KAZE keypoints in the gradient
images of the evolution images is shown in Fig. A.12. In Fig. A.13 we
have shown a failure case of KAZE detector. In the case of objects hav-
ing smoothened boundary it fails to detect any keypoints at different
levels of the scale space.

A.2. Comparison of KAZE keypoints along the boundary of the salient
objects with other interest point detectors

In order to characterize the effectiveness of KAZE for bound-
aryness we compare the distribution of the keypoints along the
ground-truth boundary annotations Fig. A.14. The experimentation

Fig. A.11. Total number of keypoints detected are 577 in the original image (Fig. 3 (a)). Majority of KAZE keypoints contained a gradient value >0 tracing the object contours. The
number of octaves in the KAZE implementation is 4 and the number of evolutions in each octave is 4. Gradient images of non-linear scale space a)–d) evolution 1–4 of respective
octaves.
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Fig. A.12. Number of KAZE keypoints with gradient value>0 in the gradient image of the evolution images.

Fig. A.13. Failure case of KAZE keypoint detection: in the first row the keypoints detected at different octaves using KAZE (non-linear scale space). KAZE fails to detect any
keypoints in the image as it does not find any well defined boundaries of the object. In the second row the keypoints detected at different octaves using SIFT (linear scale space)
have been shown. Since SIFT is based on linear scale space it gives keypoints over the regions.

was performed on the MSRA-1000 dataset [29]. We calculate the
ground-truth boundary annotations using Canny detector [68] on the
ground-truth images. We calculate the density of keypoints for each

Fig. A.14. Average density of keypoints satisfying the boundaryness criteria vs top N%
keypoints.

salient object in the band of region along the boundary. The band
of region was chosen as a = ±20 pixels along the boundary. We
observed that when a was increased the band of region started cov-
ering the spurious keypoints in the background regions. The density
of keypoints is given as:

Avg(KP density) =
I∑

i=1

SO∑
o=1

[
#KP (boundary ± a)

#Total KP

]
, (A.19)

where SO is the total number of salient objects in the image, KP
denotes the keypoint detected in the image and I indicates the
total number of images. The distribution of KAZE keypoints is
compared with FAST corner points [69], Harris corner points [70],
edge-foci interest points (EFI KP) [61], EDGELAP detector [60], edge-
based region keypoints (EBR KP) [62] and Context Aware Keypoints
Extraction (CAKE KP) [71] in Fig. A.14. We observe an increasing
trend in the curve for KAZE features indicating a continuous increase
in the average density of keypoints near the boundaries. For smaller
values of N, the reduction in the average density of KAZE keypoints
is less relevant. Curves corresponding edge-foci interest points and
edge-based region keypoints are more flat. Harris keypoints curve
saturates i.e. density remains almost the same even near edges
(particularly object boundaries in this case). EDGELAP, CAKE and
FAST keypoints show good number of keypoints near boundaries but
lag behind KAZE keypoints.



96 P. Mukherjee, B. Lall / Image and Vision Computing 61 (2017) 82–97

References

[1] M. Cheng, N.J. Mitra, X. Huang, P.H. Torr, S. Hu, Global contrast based salient
region detection, IEEE Trans. Pattern Anal. Mach. Intell. 37 (3) (2015) 569–582.

[2] B.C. Russell, A. Torralba, K.P. Murphy, W.T. Freeman, LabelMe: a database
and web-based tool for image annotation, Int. J. Comput. Vis. 77 (1-3) (2008)
157–173.

[3] B. Alexe, T. Deselaers, V. Ferrari, What is an object? Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE. 2010, pp. 73–80.

[4] C. Guo, L. Zhang, A novel multiresolution spatiotemporal saliency detection
model and its applications in image and video compression, IEEE Trans. Image
Process. 19 (1) (2010) 185–198.

[5] J. Ghosh, Y.J. Lee, K. Grauman, Discovering important people and objects for
egocentric video summarization, 2012 IEEE Conference on Computer Vision
and Pattern Recognition, IEEE. 2012, pp. 1346–1353.

[6] H. Hadizadeh, I.V. Bajic, Saliency-aware video compression, IEEE Trans. Image
Process. 23 (1) (2014) 19–33.

[7] G. Sharma, F. Jurie, C. Schmid, Discriminative spatial saliency for image classifi-
cation, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, IEEE. 2012, pp. 3506–3513.

[8] V. Gulshan, C. Rother, A. Criminisi, A. Blake, A. Zisserman, Geodesic star
convexity for interactive image segmentation, Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, IEEE. 2010, pp. 3129–3136.

[9] J. Carreira, C. Sminchisescu, Constrained parametric min-cuts for automatic
object segmentation, Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, IEEE. 2010, pp. 3241–3248.

[10] I. Endres, D. Hoiem, Category-independent object proposals with diverse rank-
ing, IEEE Trans. Pattern Anal. Mach. Intell. 36 (2) (2014) 222–234.

[11] B. Hariharan, P. Arbeláez, R. Girshick, J. Malik, Simultaneous detection and seg-
mentation, European Conference on Computer Vision, Springer. 2014, pp.
297–312.

[12] X. Cao, F. Wang, B. Zhang, H. Fu, C. Li, Unsupervised pixel-level video foreground
object segmentation via shortest path algorithm, Neurocomputing 172 (2016)
235–243.

[13] M.-M. Cheng, N.J. Mitra, X. Huang, S.-M. Hu, Salientshape: group saliency in
image collections, Vis. Comput. 30 (4) (2014) 443–453.

[14] G. Liu, Z. Lin, X. Tang, Y. Yu, Unsupervised object segmentation with a hybrid
graph model (HGM), IEEE Trans. Pattern Anal. Mach. Intell. 32 (5) (2010)
910–924.

[15] J. Winn, N. Jojic, Locus: learning object classes with unsupervised segmenta-
tion, Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference
on, 1, IEEE. 2005, pp. 756–763.

[16] J. Carreira, C. Sminchisescu, CPMC: automatic object segmentation using con-
strained parametric min-cuts, IEEE Trans. Pattern Anal. Mach. Intell. 34 (7)
(2012) 1312–1328.

[17] J.R. Uijlings, K.E. van de Sande, T. Gevers, A.W. Smeulders, Selective search for
object recognition, Int. J. Comput. Vis. 104 (2) (2013) 154–171.

[18] B. Alexe, T. Deselaers, V. Ferrari, Measuring the objectness of image windows,
IEEE Trans. Pattern Anal. Mach. Intell. 34 (11) (2012) 2189–2202.

[19] P.F. Alcantarilla, A. Bartoli, A.J. Davison, KAZE features, Computer Vision—ECCV
2012 Springer. 2012, pp. 214–227.

[20] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vis. 60 (2) (2004) 91–110.

[21] K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors, IEEE
Trans. Pattern Anal. Mach. Intell. 27 (10) (2005) 1615–1630.

[22] K.E. Van de Sande, T. Gevers, C.G. Snoek, A comparison of color features for
visual concept classification, Proceedings of the 2008 International Conference
on Content-Based Image and Video Retrieval, ACM. 2008, pp. 141–150.

[23] S. Srivastava, P. Mukherjee, B. Lall, Characterizing objects with SIKA features for
multiclass classification, Appl. Soft Comput. (2015)

[24] Y. Li, X. Hou, C. Koch, J.M. Rehg, A.L. Yuille, The secrets of salient object segmen-
tation, Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference
on, IEEE. 2014, pp. 280–287.

[25] A.K. Mishra, Y. Aloimonos, L.-F. Cheong, A. Kassim, et al. Active visual
segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 34 (4) (2012) 639–653.

[26] H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, S. Li, Automatic salient object
segmentation based on context and shape prior., BMVC, 6, 2011. pp. 9.

[27] D.R. Martin, C.C. Fowlkes, J. Malik, Learning to detect natural image boundaries
using local brightness, color, and texture cues, IEEE Trans. Pattern Anal. Mach.
Intell. 26 (5) (2004) 530–549.

[28] C. Yang, L. Zhang, H. Lu, X. Ruan, M.-H. Yang, Saliency detection via graph-based
manifold ranking, Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2013. pp. 3166–3173.

[29] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, H.-Y. Shum, Learning to
detect a salient object, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2) (2011)
353–367.

[30] A. Borji, M.-M. Cheng, H. Jiang, J. Li, Salient object detection: a benchmark, IEEE
Trans. Image Process. 24 (12) (2015) 5706–5722.

[31] W. Qi, M.-M. Cheng, A. Borji, H. Lu, L.-F. Bai, SaliencyRank: two-stage manifold
ranking for salient object detection, Comput. Vis. Media 1 (4) (2015) 309–320.

[32] V. Yanulevskaya, J. Uijlings, N. Sebe, Learning to group objects, Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2014. pp.
3134–3141.

[33] M.-M. Cheng, Z. Zhang, W.-Y. Lin, P. Torr, BING: binarized normed gradients
for objectness estimation at 300 fps, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014. pp. 3286–3293.

[34] S. Manen, M. Guillaumin, L. Gool, Prime object proposals with randomized
Prim’s algorithm, Proceedings of the IEEE International Conference on Com-
puter Vision, 2013. pp. 2536–2543.

[35] C.L. Zitnick, P. Dollár, Edge boxes: locating object proposals from edges, Com-
puter Vision—ECCV 2014 Springer. 2014, pp. 391–405.

[36] D. Hoiem, A.N. Stein, A.A. Efros, M. Hebert, Recovering occlusion boundaries
from a single image, 2007 IEEE 11th International Conference on Computer
Vision, IEEE. 2007, pp. 1–8.

[37] J. Aldana-Iuit, D. Mishkin, O. Chum, J. Matas, In the Saddle: Chasing Fast and
Repeatable Features, Dec. 2016.

[38] P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion,
IEEE Trans. Pattern Anal. Mach. Intell. 12 (7) (1990) 629–639.

[39] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, S. Li, Salient object detec-
tion: a discriminative regional feature integration approach, Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Conference on, IEEE. 2013, pp.
2083–2090.

[40] Q. Yan, L. Xu, J. Shi, J. Jia, Hierarchical saliency detection, Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Conference on, IEEE. 2013, pp.
1155–1162.

[41] F. Perazzi, P. Krähenbühl, Y. Pritch, A. Hornung, Saliency filters: contrast based
filtering for salient region detection, Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, IEEE. 2012, pp. 733–740.

[42] C. Rother, V. Kolmogorov, A. Blake, GrabCut: interactive foreground extraction
using iterated graph cuts, ACM Transactions on Graphics (TOG), 23, ACM. 2004,
pp. 309–314.

[43] R. Achanta, S. Hemami, F. Estrada, S. Susstrunk, Frequency-tuned salient region
detection, Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, IEEE. 2009, pp. 1597–1604.

[44] X. Liao, H. Xu, Y. Zhou, K. Li, W. Tao, Q. Guo, L. Liu, Automatic image segmenta-
tion using salient key point extraction and star shape prior, Signal Process. 105
(2014) 122–136.

[45] N. Otsu, A threshold selection method from gray-level histograms, Automatica
11 (285-296) (1975) 23–27.

[46] V. Movahedi, J.H. Elder, Design and perceptual validation of performance mea-
sures for salient object segmentation, Computer Vision and Pattern Recognition
Workshops (CVPRW), 2010 IEEE Computer Society Conference on, IEEE. 2010,
pp. 49–56.

[47] W. Zou, K. Kpalma, Z. Liu, J. Ronsin, Segmentation driven low-rank matrix
recovery for saliency detection, 24th British Machine Vision Conference
(BMVC), 2013. pp. 1–13.

[48] M. Everingham, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The Pascal
visual object classes (VOC) challenge, Int. J. Comput. Vis. 88 (2) (2010) 303–338.

[49] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, SLIC superpix-
els compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal.
Mach. Intell. 34 (11) (2012) 2274–2282.

[50] G. Bradski, The OpenCV Library (2000), Dr. Dobbs J. Softw. Tools (2000).
[51] A. Vedaldi, B. Fulkerson, VLFeat: An Open and Portable Library of Computer

Vision Algorithms, 2008, http://www.vlfeat.org/.
[52] E. Rahtu, J. Kannala, M. Salo, J. Heikkilä, Segmenting salient objects from images

and videos, Computer Vision—ECCV 2010 Springer. 2010, pp. 366–379.
[53] Ç. Aytekin, E.C. Ozan, S. Kiranyaz, M. Gabbouj, Visual saliency by extended

quantum cuts, Image Processing (ICIP), 2015 IEEE International Conference on,
IEEE. 2015, pp. 1692–1696.

[54] K. Wang, L. Lin, J. Lu, C. Li, K. Shi, PIsa: pixelwise image saliency by aggre-
gating complementary appearance contrast measures with edge-preserving
coherence, IEEE Trans. Image Process. 24 (10) (2015) 3019–3033.

[55] R. Unnikrishnan, C. Pantofaru, M. Hebert, Toward objective evaluation of image
segmentation algorithms, IEEE Trans. Pattern Anal. Mach. Intell. 29 (6) (2007)
929–944.

[56] G. Li, Y. Yu, Visual saliency based on multiscale deep features, Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2015. pp.
5455–5463.

[57] X. Li, L. Zhao, L. Wei, M.-H. Yang, F. Wu, Y. Zhuang, H. Ling, J. Wang, Deep-
Saliency: multi-task deep neural network model for salient object detection,
IEEE Trans. Image Process. 25 (8) (2016) 3919–3930.

[58] C. Qin, G. Zhang, Y. Zhou, W. Tao, Z. Cao, Integration of the saliency-based seed
extraction and random walks for image segmentation, Neurocomputing 129
(2014) 378–391.

[59] N. Houhou, J.-P. Thiran, X. Bresson, Fast texture segmentation based on semi-lo-
cal region descriptor and active contour, Numer. Math. Theory, Methods Appl.
2 (EPFL-ARTICLE-140431) (2009) 445–468.

[60] K. Mikolajczyk, A. Zisserman, C. Schmid, Shape recognition with edge-based
features, British Machine Vision Conference (BMVC’03), 2, The British Machine
Vision Association. 2003, pp. 779–788.

[61] C.L. Zitnick, K. Ramnath, Edge foci interest points, Computer Vision (ICCV), 2011
IEEE International Conference on, IEEE. 2011, pp. 359–366.

[62] T. Tuytelaars, L. Van Gool, Matching widely separated views based on affine
invariant regions, Int. J. Comput. Vis. 59 (1) (2004) 61–85.

[63] T. Lindeberg, Scale-Space Theory in Computer Vision, 256. Springer Science &
Business Media. 2013.

[64] J.J. Koenderink, The structure of images, Biol. Cybern. 50 (5) (1984) 363–370.
[65] L. Florack, B.M. ter Haar Romeny, J.J. Koenderink, M.A. Viergever, Linear

scale-space, J. Math. Imaging Vision 4 (4) (1994) 325–351.
[66] W. Wakeham, Fick’s Law of Diffusion, 1980.
[67] J. Weickert, Efficient image segmentation using partial differential equations

and morphology, Pattern Recognit. 34 (9) (2001) 1813–1824.



P. Mukherjee, B. Lall / Image and Vision Computing 61 (2017) 82–97 97

[68] J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal.
Mach. Intell. (6) (1986) 679–698.

[69] E. Rosten, T. Drummond, Machine learning for high-speed corner detection,
Computer Vision—ECCV 2006 Springer. 2006, pp. 430–443.

[70] C. Harris, M. Stephens, A combined corner and edge detector, Alvey Vision
Conference, 15, Citeseer. 1988, pp. 50.

[71] P. Martins, P.D. Carvalho, C. Gatta, Context aware keypoint extraction for robust
image representation., BMVC, 2012. pp. 1–12.


