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ABSTRACT

In this paper, we propose a novel object proposal generation
scheme by formulating a graph-based salient edge classifi-
cation framework that utilizes the edge context. In the pro-
posed method, we construct a Bayesian probabilistic edge
map to assign a saliency value to the edgelets by exploiting
low level edge features. A Conditional Random Field is then
learned to effectively combine these features for edge clas-
sification with object/non-object label. We propose an ob-
jectness score for the generated windows by analyzing the
salient edge density inside the bounding box. Extensive ex-
periments on PASCAL VOC 2007 dataset demonstrate that
the proposed method gives competitive performance against
10 popular generic object detection techniques while using
fewer number of proposals.

Index Terms— Saliency, edges, object proposals, CRF

1. INTRODUCTION

Humans have an excellent ability to simultaneously localize,
detect and recognize objects. For machines to know the ex-
act spatial extent of the objects, sufficient training from vari-
ous exemplar models is required and involves meticulous se-
lection of the object parts from potentially confusing back-
ground knowledge. Given the image space, the plausible set
of object hypotheses is exponentially large. To select the cor-
rect subset of ’good’ object regions and provide a tight bound
on the spatial limit of the bounding box involves appropri-
ate feature selection. Thus, the key solution to effective ob-
ject proposal generation is to leverage the strength of feature
statistics. Although with the advent of deep learning based
techniques [1, 2] and the availability of huge corpus of image
data the task of training a machine with huge manually anno-
tated data has eased a lot. Still, it is difficult to capture many
interesting patterns like convexity and smoothness of region
boundaries locally. There is a scope of improvement for ap-
pearance of a new object category. Therefore, the need arises
for a model which captures the essence of likeliness of the ob-
ject regions to provide a suitable set of object proposals [3–9].

Another approach to object localization is the generic ob-
ject region proposal strategy [7, 10, 11]. Segmentation based
on regions is more appealing in the sense that the regions in-
herently contain the shape and scale information about the

objects. There is minimal hindrance in terms of background
clutter. But, it is extremely difficult to generate coherent non-
overlapping segments. So, rather an efficient scheme for gen-
erating few window based proposals having a tight coverage
on the object is more convenient and logical for applications
like classification [4, 12], video summarization , segmenta-
tion [4], action recognition.
Recently, a couple of techniques have tried to exploit the po-
tential of edges as an object localization cue [9, 13]. Edges
capture most of the shape information thus preserving impor-
tant structural properties contained in the image. They often
occur at locations adhering to the object boundaries which
make them a suitable candidate as precursor to object local-
ization as well as segmentation. Major advantage of pro-
posed technique in contrast to to [9, 13] is that an inherent
saliency ordering is preserved in the set of generated propos-
als apart from providing high precision and recall rates even
with lesser number of proposals. Generating fewer number
of high precision proposals also reduces the number of spu-
rious false positives in the detection [3]. The contemporary
deep learning based methods provide excellent results but re-
quire huge amount of training data and sometimes initializa-
tion with good object hypotheses [2]. Our technique can be
augmented with such techniques as well. In particular, we
demonstrate in the experiments that even with ∼ 10− 20 ob-
ject proposals the detection rate is quite high (53%− 61.55%
at IoU=0.5). In view of the above discussion, the key contri-
butions can be summarized as,

1. To the best of our knowledge, this is the first work to
establish the concept of object edge classification in a
Conditional Random Field (CRF) framework for object
proposal generation.

2. We demonstrate good performance (high recall rates)
utilizing very few number of object proposals. We rank
the key objects in relative order of salience based on the
edge saliency by the proposed scheme.

2. PROPOSED METHODOLOGY

In this section, we give a detailed overview of the proposed
salient object proposal generation scheme. The end-to-end
pipeline of the proposed method is shown in Fig. 1.
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Fig. 1. The SalProp Framework. Given any RGB image,
we generate proposals ranked in the order of saliency. Green
boxes contain the most salient objects having higher rank and
blue boxes contain less salient objects and are ranked lower in
the proposal set. The number assigned to each box indicates
its saliency ranking in the proposal pool.

2.1. Edge Saliency Computation (Bayesian Framework)

The early processing units in the primate visual system help
in detecting the object edge responses which are then percep-
tually grouped to form continuous contours. Deriving moti-
vation from this, we describe the strategy for identification
of edge pixels corresponding to the objects so that this edge
map can be used as a strong prior for object localization.
To this end, we utilize a sparse edge map to form a proba-
bilistic saliency map in which each edgelet (edge segment)
is assigned a saliency value, thus providing it a distinctive-
ness score. The score is computed by encoding the local edge
context information i.e. texture, color gradient, edge mag-
nitude. We pose the edge saliency detection as a Bayesian
inference problem to indicate the edge segments belonging to
the object (salient) or background (non-salient). We estimate
the prior distribution of salient or background edges based on
their edge magnitude since stronger edges are more likely to
be a part of an object. Given an image, we first compute the
edge responses with the Oriented Edge Forests (OEF) bound-
ary detector [14] which is highly efficient in detecting object
boundaries and computationally less expensive. We utilize
the sparse variant of OEF detection in which non-maximal
suppression (NMS) is used. The resultant sparse edge map
consists of each pixel i having an edge magnitude |ei|. We
further perform a thresholding (provides computational effi-
ciency) by considering edge segments with length l > 15 and
edge pixels having magnitude |ei| >40. These values pro-
vided best results in our experimental analysis. The posterior
probability of each edge segment denoted by p(sal|s) having
a relative edge strength s in the sparse edge map is mathemat-
ically formalized as:

p(sal|s) = p(sal)p(s|sal)
p(sal)p(s|sal) + p(bg)p(s|bg) , (1)

where p(sal|s) is the probability of the edge segment being
salient. p(sal) and p(bg) are the prior probabilities of the
edge segment to be salient (object edges) or background re-
spectively. p(s|sal) and p(s|bg) are the likelihood of observa-

tions. s denotes the relative edge strength as computed in Eq.
8. Edge saliency prior of jth edge segment is computed as:

p(sal) =
N

maxjNj
,N = fG.fLTP .s, (2)

where N indicates the scalar multiplication of the texture,
color and edge magnitude values of the edge pixels in the jth

edge segment. We integrate the magnitudes of color gradi-
ents of a particular orientation (Go,i), oε{0◦, 45◦, 90◦, 135◦}
along the edges denoted by fG, given as:

fG =

√∑
o

(
∑
i

Go,i)2. (3)

fLTP is the local ternary pattern (LTP) of the edge pixels Ii
contained in the jth edge segment is computed by comparing
the intensity value of it with the intensity values of its neigh-
bors denoted by Inb using a kernel of size 3. In [15], the
authors utilize the LTP code as a combination of its upper and
lower local binary pattern (LBP) codes. Since, we represent
LTP for the edge segments only we take the average variance
of this combination over the edge. Here, T is user defined
threshold and B = 8. We take the variance of all the LTP
values of the edge pixels for a particular segment given as:

fLTP =
σ(ULBP ) + σ(LLBP )

2
, (4)

ULBP =

B−1∑
b=0

s′(Inb − Ii).2b, (5)

LLBP =

B−1∑
b=0

f ′(Inb − Ii).2b, (6)

s′(z) =

{
1 z ≥ T
0 otherwise

f ′(z) =

{
1 z ≤ −T
0 otherwise

(7)

The maximum magnitude value s of edge pixels in jth edge
segment is computed as follows:

s = maxi(|ei|). (8)

The background prior is given as,

p(bg) = 1− p(sal). (9)

To find the likelihood, we need to separate the edge segments
into salient or background segments. If the edge magnitude
≥ β.s, we consider it as salient, else it is a background edge
segment. Here, β indicates the edge magnitude threshold,
where β > 0. We then compute the normalized histograms
hs and hbg of the edge magnitudes of the edge pixels in
salient and background edge segments respectively with 10
bins each. The observation likelihoods p(s|sal) and p(s|bg)
are calculated from hs and hbg respectively based on bin value
to which s of the edge segment belongs. The probabilistic
edge map is shown in Fig. 2.
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Fig. 2. (a) Original image (b) Edge map using OEF (c) After
NMS and thresholding (d) Bayesian Probabilistic edge map
(indicating saliency of edge segments)

2.2. CRF for Edge Classification

We formulate Edge Feature Graph Conditional Random Field
[16] (CRF) model to learn the conditional distribution over
the edge segment labeling given an image using the local edge
context. CRF is used here for structured prediction for the
edge labeling problem. The links in the graph are made be-
tween the edge segments (nodes) which are spatially close.
The nodes are associated with 7-D feature vector (Section
2.2.1). The score associated with each link is denoted as eij
given by a 4-D feature vector [Up/Down, Right/Left, mean,
variance]. The first two elements (0/1) in the vector denote
the relative position of node iwith respect to node j. The next
two elements denote the mean and variance in the feature dif-
ferences between the two nodes in the graph. The objective
function (energy) of the structured prediction is given as:

E(L|X) =
∑
iεV

φ(li, X;W1) +
∑

{i,j}εE

ψ(li, lj , X;W2), (10)

where L is the structured label, X is the structured input
features, li is the label of the node, φ(li, X;W1) are unary
potentials and ψ(li, lj , X;W2) indicates pairwise potentials.
The objective function is optimized using Block-coordinate
Frank Wolfe Structured SVM to compute W = [W1 W2].

2.2.1. Local Edge Features

We consider two image patches (radius=5) on either side of
the edge segment to take into account the contextual informa-
tion around the edge. We uniformly sample half of the data
points (pixels) in region A1 and A2 to avoid overfitting. We
next compute the texture features for the data points in these
regions. For this, we compute a 5-dimensional filter bank
at scale k1. We next compute the variance of the DoG and
LoG feature vectors of each region. We concatenate the fea-
ture vectors in ascending order of variance as [DoG1, DoG2]
and [LoG1, LoG2]. The intuition behind this is that the re-
gion having low texture variation is likely to belong to ob-
ject region and vice-versa while maintaining an ordering for

1We use perceptually uniform CIELab color space. The filter bank con-
sists of Difference of Gaussian (DoG) at 2 scales {k, 2k}, Laplacian of
Gaussian (LoG) at 3 scales {k, 2k, 4k}. These filters are applied only to
the luminance channel. (k taken as 0.5)

CRF training. Thus, the 7-D feature vector for each edge seg-
ment is represented by the vector, [fG, DoG1, DoG2, LoG1,
LoG2, fLTP , s]. The computation of fG, fLTP and s has
been explained in Section 2.1.

2.3. Window Generation and Scoring

We proceed with a sliding window technique for proposal
generation over position, scale and aspect-ratio. Each suc-
cessive window maintains an Intersection over Union (IoU)
with the previous window and the step size is calculated ac-
cordingly. The IoU is taken as 0.65 (as in EdgeBoxes ap-
proach [13]). Scale is set from 0.5% to 95% of the image size
with 1% increment between scales. The aspect ratio ranges
from 1/3 to 3. All edge segments that fall completely inside
the proposal window increase the score depending on their
edge length and saliency value. Furthermore, the score dis-
courages larger windows to have high scores by dividing the
score by the area of the window given as,

Sw =

∑
j sj .lj√
Areaw

, (11)

where sj indicates the saliency value and lj is the length of the
jth edge segment. Areaw is the area of window w. There are
two necessary post processing steps for generating better pro-
posals: Refinement and Non-Maximal Suppression (NMS).
We perform these steps in congruent lines to those in [13].

3. EXPERIMENTAL RESULTS

We utilize Pystruct 0.2.5 structured prediction [18] for im-
plementing CRF model. The CRF model is trained on the
MSRA1000 saliency dataset [19] which has been chosen due
to higher distinction of edge features between the object and
background. The training is performed in two steps. First,
the edgemap is extracted using OEF followed by NMS and
thresholding. Next, we perform k-means clustering on edge
magnitude of edges (with k=2) to segregate them into object
and non-object edges. We take the ground truth edges and
higher magnitude edges as object edges while lower magni-
tude edges as non-object edges. CRF is trained by utilizing
the edge features as discussed in Section 2.2.1. The model is
further evaluated on PASCAL 2007 [20] with 2510 validation
set images (to get the final parameter setting) and 4952 testing
images. The parameter setting used in Section 2.1 involves T
taken as 5 and β = 0.8.

3.1. Quantitative Evaluation

Table 1 compares SalProp against the state-of-art algorithms.
Fig. 3(a) shows cut-off NMS threshold. Fig. 3(b)-(d) shows
the detection rates when we are varying the number of object
proposals at different IoUs. SalProp is the best technique at
lower number of proposals achieving over 25% and 19% re-
call with only 1 window at IoU=0.5 and 0.6 respectively. At



Table 1. Comparison of top 1000 proposals with state-of-the-art techniques on AUC% (higher the better), number of proposals
(N) at 75% recall (lower the better) and recall% (higher the better). ’-’ indicates that the particular recall rate is not reached.

Method IoU=0.5 IoU=0.6 IoU=0.7 Time(in s)AUC N@75% Recall AUC N@75% Recall AUC N@75% Recall
EdgeBoxes70 [13] 65.82 86 93.45 60.52 141 90.73 53.03 294 84.15 0.25
PE [9] 1.8 - 10.4 0.08 - 4.7 0.02 - 1.2 7.2
MCG [10] 71 37 94.6 62.8 95 90.2 62.5 366 83 34
Objectness [3] 62 145 89 52 504 78 30 - 41 3
Rahtu [5] 57 278 84 50 551 79 43.5 - 73.5 3
RP [6] 59.3 129 89 50 315 83 40.7 1000 75 1
Rantalankila [7] 25.14 511 86.38 21.63 718 79.77 17.76 - 70.75 10
SS [4] 62.3 105 93 54 207 88 45.3 544 80 10
Rigor [11] 40.39 - 67.43 32.05 - 54.5 23.44 - 40.73 6.84
GOP [17] 47.8 155 93 41 272 87 33.4 705 76 0.9
SalProp 67.5 74 91 58.1 244 84 44 - 71.3 7

IoU=0.7, SalProp outperforms Rahtu [5] by 3.46%, Selective
Search [4] by 5.16%, Objectness [3] by 7.32%, Randomized
Prim’s [6] by 8.71%, GOP [17] by 22.36%, Rigor [11] by
23.46%, Rantalankila [7] by 30.05% and Perceptual Edge [9]
by 30.35% at top-10 proposals demonstrating that it consis-
tently ranks higher the object proposals that are closer to the
ground truth when lower number of proposals are considered.

Fig. 3. (a) NMS cut-off threshold for highest recall value at
varying IoU on validation set images. (b)-(d) The detection
rate vs. the number of bounding box proposals for varying
IoU = 0.5, 0.6 and 0.7 on validation set images.

MCG [10] and EdgeBoxes [13] techniques outperform
SalProp at a few number of proposals. SalProp provides com-
parable performance to EdgeBoxes while having a computa-
tional speedup of 5x over MCG (Table 1) which is based on
learning based setting whereas SalProp operates in a com-
putationally efficient no explicit learning based setting. The
results demonstrate that the proposed algorithm performs bet-
ter on varying IoU thresholds for less number of candidate
proposals while maintaining high recall at higher proposals.

The important note to make here is that except Objectness the
compared approaches do not take into account the saliency
aspect of an object which is a key property in characterizing
an object [21]. Our method outperforms objectness by 2%,
6% and 30% at IoU thresholds 0.5, 0.6 and 0.7 respectively.

3.2. Qualitative Evaluation

Fig 4 shows qualitative results. The results are computed
for IoU=0.7. It can be observed that SalProp produces tight
bounding boxes (e.g. sheep and babies) and is able to detect
occluding and difficult objects with high accuracy.

Fig. 4. Top Row: SalProp, Bottom Row: EdgeBoxes [13].
Closest bounding boxes (blue) having maximum overlap with
the ground truth boxes (green).

4. CONCLUSION

We proposed a novel object proposal generation algorithm
which operates in a computationally efficient learning based
setting where the salient object edge density inside the bound-
ing box is analyzed to score the proposal set. We provided
comprehensive empirical evaluation and comparison with
several baselines and existing methods to demonstrate the
effectiveness of the technique. We showed that the proposed
architecture achieves high recall rates with lesser number
of proposals with varying IoU thresholds and subsequently
making it more reliable in context of competing methods. We
also ranked the key objects according to their saliency.
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