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Abstract

The Vision Meets Drone Multiple Object Tracking

(MOT) Challenge 2019 is the second annual activity fo-

cusing on evaluating multi-object tracking algorithms on

drones, held in conjunction with the 17-th International

Conference on Computer Vision (ICCV 2019). Results of

12 submitted MOT algorithms on the collected drone-based

dataset are presented. Meanwhile, we also report the re-

sults of 6 state-of-the-art MOT algorithms, and provide a

comprehensive analysis and discussion of the results. The

results of all submissions are publicly available at the web-

site: http://www.aiskyeye.com/. The challenge

results show that MOT on drones is far from being solved.

We believe the challenge can largely boost the research and

development in MOT on drone platforms.

1. Introduction

Multiple Object Tracking (MOT) aims to determine the

identities and trajectories of multiple moving objects in a

video, thus is a crucial step in video understanding. On the

other hand, autonomous drone systems attract increasingly

research in recent years because of its more flexibility than

traditional fixed surveillance cameras.

Several previous benchmark datasets such as KITTI [20],

MOTChallenge [28] and UA-DETRAC [53, 36, 35] are pro-

posed for the MOT task. However, the challenges in those

datasets are very different from that on drones for MOT al-

gorithms, such as large viewpoint change and scales. Thus,

these algorithms are not usually optimal for dealing with

video sequences generated by drones. Some recent prelim-

inary efforts [40, 45, 22, 16] have been devoted to construct

datasets captured using a drone platform, which are still

limited in size and scenarios covered, due to the difficulties

in data collection and annotation. Thus, a larger scale drone

based benchmark [66] is proposed to further boost research

on computer vision problems with drone platform.

As discussed in [53], the overall MOT system usually

consists of object detection and multi-object tracking. It is

more reasonable to evaluate complete MOT systems with-

out common prior detection input. To this end, we orga-

nize a challenge workshop, “Vision Meets Drone Video

Multiple Object Tracking” (VisDrone-MOT2019), in con-

junction with the 17-th International Conference on Com-

puter Vision (ICCV 2019) in Seoul, Korea. Different from

VisDrone-VDT2018 [67] including MOT methods with

common prior detection input, we invite researchers to sub-

mit the results of MOT systems on the benchmark dataset.

The comparison of the submitted algorithms can be found

on the challenge website: www.aiskyeye.com/.

2. Related Work

In this section, we review some recent multi-object track-

ing methods. Since similarity learning plays important role

in the MOT task, we also review related person re-id meth-

ods, which calculates discriminative appearance features of

objects for better tracking performance.

2.1. Multi-Object Tracking

The goal of the MOT task is to determine the target tra-

jectories in sequences. Most of the previous methods are

tracking-by-detection strategy based. In [55], a new data

association method is developed based on hierarchical rela-

tion hypergraph, which formulates the MOT task as a dense

neighborhoods searching problem on the dynamically con-

structed affinity graph. In [27], the Bilinear LSTM model is

used to improve the learning of long-term appearance mod-

els of objects. Zhu et al. [65] embed single object tracking

into data association methods to deal with noisy detections

and frequent interactions between targets. Keuper et al. [26]

develops a correlation co-clustering model for combining

low-level grouping with high-level detection and tracking.

In [52], both temporal and appearance information are com-

bined in a unified framework. To exploit different degrees

of dependencies among tracklets, Wen et al. [54] propose a

new non-uniform hypergraph based MOT method. To mini-

mize the number of switches, Maksai and Fua [37] propose

an iterative scheme of building a rich training set to learn

a scoring function that is an explicit proxy for the target

tracking metric. Chu and Ling [12] develop an end-to-end

network including feature extraction, affinity estimation and

multi-dimensional assignment.

2.2. Person Re-identification

Person re-identification (ReID) aims to identify a person

of interest at other time or place, which is widely applied

in the MOT task. AlignedReID [61] extracts a global fea-

ture which is jointly learned with local features. Yang et

al. [59] propose a weighted linear coding method to learn

multi-level (e.g., pixel-level, patch-level and image-level)

descriptors from raw pixel data in an unsupervised manner.

Sun et al. [50] learn discriminative features using a network

named part-based convolutional baseline and a refined part

pooling method. Si et al. [47] learn context-aware feature

sequences and perform attentive sequence comparison si-

multaneously.

Instead of pairs of images, video-based ReID methods

focus on pairs of video sequences. Gao and Nevatina [18]

compare four different temporal modeling methods for

video-based person reID, including temporal pooling, tem-

poral attention, RNN and 3D convnets. Li et al. [29] pro-

pose a new spatiotemporal attention model that automati-

cally discovers a diverse set of distinctive body parts. Re-

cently, Chen et al. [10] aim to attend to the salient parts of



persons in videos jointly in both spatial and temporal do-

mains.

3. The VisDrone-MOT2019 Challenge

As discussed above, the VisDrone-MOT2019 Challenge

focuses multi-object tracking without prior detection input.

That is, participants are expected to submit multiple object

tracking results based on their private detections. Besides,

appearance or motion models from additional data are wel-

come.

3.1. The VisDrone-MOT2019 Dataset

The VisDrone-MOT2019 Dataset uses the same data as

in the Visdrone-VDT2018 Challenge [67]. Specifically,

it consists of 79 video clips with 33, 366 frames in total,

which is divided into three subsets, i.e., training set

(56 video clips with 24, 198 frames), validation set (7

video clips with 2, 846 frames), and testing set (16 video

clips with 6, 322 frames). Since the dataset is extremely

challenging, we focus on five selected object categories in

this challenge, i.e., pedestrian1, car, van, bus, and truck.

Some annotated example frames are shown in Figure 1.

Since we evaluate the peformance of the overall track-

ing system, we do not provide the common detection input

for the tracker and encourage the participants to use their

own detection methods. Similar to Task 4a in Visdrone-

VDT2018 [67], we use the protocol of [41] to evaluate the

performance of the submitted algorithms. Each algorithm

is required to produce a list of bounding boxes with confi-

dence scores and the corresponding identities. We sort the

tracklets (formed by the bounding box detections with the

same identity) according to the average confidence over the

bounding box detections. A tracklet is considered correct if

the intersection over union (IoU) overlap with ground truth

tracklet is larger than a threshold (i.e., 0.25, 0.50, and 0.75).

The MOT algorithm is ranked by averaging the mean aver-

age precision (mAP) per object class over different thresh-

olds. Please refer to [41] for more details.

3.2. Submitted Trackers

There are in total 12 different multi-object tracking

methods submitted to the VisDrone-MOT2019 Challenge.

We summarize the submitted algorithms in Table 1, and

present the descriptions of the algorithms in Appendix A.

Given the Faster R-CNN [44] detection input, we also

evaluate 6 baseline methods (i.e., GOG [42], IHTLS [15],

TBD [19], CMOT [5], H2T [55], and CEM [39]) using the

reasonable parameters. In addition, the MOT track winner

of VisDrone-VDT2018 Challenge Ctrack [67] is compared

in our experiment.

1If a human maintains standing pose or walking, we classify it as a

pedestrian; otherwise, it is classified as a person.

All the submitted MOT methods are tracking-by-

detection based. Morover, recent state-of-the-art detec-

tors are used to provide the detection input, such as Cas-

cade R-CNN [8], CenterNet [64], R-FCN [13], FPN [31],

RetinaNet [32] and Faster R-CNN [44]. To improve the

data association accuray, the re-id strategy is used to gen-

erate discriminative feature between detections, including

HMTT (A.4), IITD DeepSort (A.5), SCTrack (A.7), T&D-

OF (A.9), TNT DRONE (A.10) and VCLDCN (A.12). To

capture temporal coherency, single object trackers are com-

bined into the MOT algorithm, including KCF (DBAI-

Tracker (A.1)) and DaSiameseRPN (HMTT (A.4)). An-

other solution is exploit temporal features such as KLT

(GGDTRACK (A.3)), optical flow (Flow-Tracker (A.2),

T&D-OF (A.9)), motion patterns (TrackKITSY (A.11)) and

LSTM (SGAN (A.8)). OS-MOT (A.6) is a non-deep learn-

ing based method including three main modules: feature

extraction [14], data association [6], and model update.

4. Results and Analysis

The results of the submissions are presented in Table

2. DBAI-Tracker (A.1), TrackKITSY (A.11) and Flow-

Tracker (A.2) achieve the top 3 AP score among all submis-

sions, respectively. All of them are based on the detections

from Cascade R-CNN [8]. To adapt to the VisDrone data

with many small objects, they exploit not only robust ap-

pearance representation of the object, but also temporal co-

herency information by single object trackers or other low-

level motion patterns.

Compared to the MOT-track winner of VisDrone-

VDT2018 Challenge Ctrack [67], the top 6 submitted al-

gorithms in this year achieve much higher accuracy. The

baseline methods using the Faster R-CNN detections as in-

put do not perform well. The best result is produced by

CMOT with 14.22 AP score.

DBAI-Tracker (A.1) achieves top accuracy while main-

taining good efficiency, i.e., running 20 ∼ 50 fps with Tesla

V100 GPU. In addition, GGDTRACK (A.3) achieves good

performance while maintaining reasonable efficiency with-

out GPU cards, i.e., 25 fps.

4.1. Performance Analysis by Categories

We also report the accuracy of the trackers in different

object categories, including APcar, APbus, APtrk, APped and

APvan. DBAI-Tracker (A.1) performs the best in all cate-

gories expect pedestrian. Moreover, it achieves much better

AP score in categories with a small amount of training data,

e.g., bus and truck. We speculate that the improved Cascade

R-CNN [8] are effective in such case. TrackKITSY (A.11)

achieves the top APped score, demonstrating the effective-

ness of the extracted motion patterns for tracking small ob-

jects. It also ranks the second place in the car, truck and van

categories. Flow-Tracker (A.2) ranks the third place in the



Figure 1. Some annotated example frames of MOT. The bounding boxes and the corresponding attributes of objects are shown for each

sequence.

Table 1. The descriptions of the submitted MOT algorithms in the VisDrone-MOT2019 Challenge. GPUs and CPUs for training, imple-

mentation details (P for python and M for Matlab), framework, pre-trained datasets (A indicates Market1501 [62], C indicates COCO [33],

M indicates MOT [38], O indicates OTB [58], U indicates CUHK [30], and × indicates that the methods do not use the pre-trained datasets)

and the running speed (in FPS) are reported.
Method GPU CPU Code Framework Pre-trained Speed

DBAI-Tracker (A.1) Tesla V100 Intel Xeon Platinum 8160 P Cascade R-CNN [8]+GOG [42] C 20 ∼ 50

Flow-Tracker (A.2) GTX 1080Ti Intel Xeon E5-1650v4@3.60GHz×12 P Cascade R-CNN [8]+IoU Tracker [7] C 5

GGDTRACK (A.3) × Intel Xeon E5-2650v3@2.30GHz(64GB) P Faster R-CNN [44]+DNF [46] × 25

HMTT (A.4) GTX TITAN X Intel i7-4790K@4.00GHz P CenterNet [64]+IOU tracker [7] C,O 0.4

IITD DeepSort (A.5) Tesla K80 Intel Xeon @1.70GHz×16 P RetinaNet [32]+DeepSORT [57] C 0.3

OS-MOT (A.6) GTX980 Intel i7-6700K@4.00GHz×8(16GB) M auction assign [6] × 5

SCTrack (A.7) × Intel i7-4720@2.60GHz M Faster R-CNN [44]+SCTrack [2, 1] × 1.4

SGAN (A.8) Titan X Pascal Intel i7-6700@3.40GHz P Social-LSTM [3] × 1.5

T&D-OF (A.9) TITAN X MAXWELL Intel i7-7700(48GB) P R-FCN [13]+MOTDT [11] A,M,U 0.3

TNT DRONE (A.10) Quadro GV100/Titan Xp×2 Intel i7-7700K@4.20GHz P,M Faster R-CNN [43] +TrackletNet [52, 60] M 3.2

TrackKITSY (A.11) NVS5200M Intel i7-6700@3.40GHz (16GB) C++ Cascade R-CNN [8]+TrackCG [51] × 10

VCLDAN (A.12) GTX 1080Ti Intel Xeon E5-2640@2.40GHz P DAN [49] × 6.3

car, truck and van categories, which uses FlowNet [48] as

a tracker to predict the locations of the unmatched tracks in

several frames. Similarly, HMTT (A.4) ranks the second

place in the bus and third place in pedestrian categories,

which uses the state-of-the-art single object tracker DaSi-

ameseRPN [68] to fill the gaps when matching IOU mech-

anism does not work.

4.2. Discussion

It is challenging to perform multi-object tracking on

drones. The results of current submissions are far away

from the requirements of practical applications. We can ex-

plore some effective techniques to follow:

• Appearance representation. According to the sub-

mitted MOT methods, the ReID models are useful

in associating detections by exploiting discriminative

features, e.g., HMTT (A.4), IITD DeepSort (A.5), SC-

Track (A.7), T&D-OF (A.9), TNT DRONE (A.10)

and VCLDCN (A.12). The ReID models used in those

algorithms are trained offline using external data such

as Market1501 [62] and CUHK [30].

• Motion representation. Since the object motion pat-

tern is complex within cameras on drones, it is impor-

tant to construct robust motion model for object asso-

ciation, e.g., KLT (GGDTRACK (A.3)), optical flow

(Flow-Tracker (A.2), and LSTM (SGAN (A.8)).



Table 2. Multi-object tracking results on the VisDrone-MOT2019 testing set. ∗ indicates that the tracking algorithm is submitted by the

VisDrone Team. The best three performers are highlighted by the red, green and blue fonts.

Method AP AP@0.25 AP@0.50 AP@0.75 APcar APbus APtrk APped APvan

DBAI-Tracker (A.1) 43.94 57.32 45.18 29.32 55.13 44.97 42.73 31.01 45.85

TrackKITSY (A.11) 39.19 48.83 39.36 29.37 54.92 29.05 34.19 36.57 41.20

Flow-Tracker (A.2) 30.87 41.84 31.00 19.77 48.44 26.19 29.50 18.65 31.56

HMTT (A.4) 28.67 39.05 27.88 19.08 44.35 30.56 18.75 26.49 23.19

TNT DRONE (A.10) 27.32 35.09 26.92 19.94 38.06 22.65 33.79 12.62 29.46

GGDTRACK (A.3) 23.09 31.01 22.70 15.55 35.45 28.57 11.90 17.20 22.34

Ctrack† [67] 16.12 22.40 16.26 9.70 27.74 28.45 8.15 7.95 8.31

CMOT∗ [5] 14.22 22.11 14.58 5.98 27.72 17.95 7.79 9.95 7.71

IITD DeepSort (A.5) 13.88 23.19 12.81 5.64 32.20 8.83 6.61 18.61 3.16

T&D-OF (A.9) 12.37 17.74 12.94 6.43 23.31 22.02 2.48 9.59 4.44

SCTrack (A.7) 10.09 14.95 9.41 5.92 18.98 17.86 4.86 5.20 3.58

VCLDAN (A.12) 7.50 10.75 7.41 4.33 21.63 0.00 4.92 10.94 0.00

GOG∗ [42] 6.16 11.03 5.30 2.14 17.05 1.80 5.67 3.70 2.55

TBD∗ [19] 5.92 10.77 5.00 1.99 12.75 6.55 5.90 2.62 1.79

CEM∗ [39] 5.70 9.22 4.89 2.99 6.51 10.58 8.33 0.70 2.38

H2T∗ [55] 4.93 8.93 4.73 1.12 12.90 5.99 2.27 2.18 1.29

IHTLS∗ [15] 4.72 8.60 4.34 1.22 12.07 2.38 5.82 1.94 1.40

SGAN (A.8) 2.54 4.87 2.06 0.69 10.42 0.00 0.00 2.27 0.00

OS-MOT (A.6) 0.16 0.18 0.18 0.13 0.00 0.00 0.71 0.00 0.09

5. Conclusion

This paper concludes the VisDrone-MOT2019 Chal-

lenge, where 12 MOT algorithms are submitted. DBAI-

Tracker (A.1), TrackKITSY (A.11) and Flow-Tracker (A.2)

achieve the top three AP scores among all submissions, i.e.,

43.94, 39.19 and 30.87, respectively. Notably, they rely

on state-of-the-art object detector, i.e., Cascade R-CNN [8].

The VisDrone-MOT2019 Challenge was successfully held

on October 27, 2019, which is a part of the “Vision Meets

Drones: A Challenge” workshop in conjunction with the

17-th International Conference on Computer Vision (ICCV

2019). We hope this challenge can provide a unified plat-

form for multiple object tracking evaluation on drones.
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A. Submitted Trackers

In the appendix, we summarize 12 tracking methods sub-

mitted in the VisDrone-MOT2019 Challenge, which are or-

dered alphabetically.

A.1. DeepBlueAI-Tracker (DBAI-Tracker)

Zhipeng Luo, Yuehan Yao, Zhenyu Xu, Feng Ni and Bing

Dong

{luozp, yaoyh, xuzy, nif, dongb}@deepblueai.com

DBAI-Tracker follows the pipeline of tracking by de-

tection. Strong detection model is designed in Iou

tracker [7]. GOG [42] and KCF [21] are also used. Our

detection model is Cascade R-CNN [8] and IoU tracker [7].

We use FPN [31] based multi-scale feature maps to exploit

robust representation of the object. Besides, GCNet [9] are

used for better performance.

A.2. Multiple Object Tracking with Motion and Ap-
pearance Cues (Flow-Tracker)

Weiqiang Li, Jiatong Mu and Guizhong Liu

{lwq1230,m625329163}@stu.xjtu.edu.cn,

liugz@xjtu.edu.cn

Flow-Tracker is based on Cascade R-CNN [8] and

IoU Tracker [7]. For detection, we use Cascade RCNN as

base detector and the backbone is ResNet-101. In order

to improve detection results, the deformable convolution

was added in basic network. To supplement the training

data, we use COCO train set to pretrain our detector and

then fine-tune it on VisDrone2019-MOT train set. For

tracking, we make some improvements on IoU Tracker.

Our tracking framework can be divided into three parts.

First, we use an optical flow network to predict the motion



between two frames and predict the position of tracks on

the current frame, which can solve the problem of camera

motion. Then we compute IoU between the tracks and

the detections. If it is higher than a thresh, we think they

are matched. Second, we extract the appearance features

of unmatched tracks and detections. Then we compute

appearance distance and IoU distance between unmatched

tracks and detections. If they meet the matching criteria

at the same time, we think they are matched. Final, for

those unmatched tracks, we use FlowNet [48] as a tracker

to continue predicting their position for several frames.

If they are matched successfully within these frames, we

believe these tracks can continue; otherwise, we think these

objects have disappeared. If the optical flow prediction

is performed each frame, the tracking speed is 5 fps; and

if the optical flow is predicted only when the camera is

moving, the speed can reach 100 fps.

A.3. Costflow tracker Learning from Generalized
Graph Differences (GGDTRACK)

Håkan Ardö and Mikael Nilsson

hakanad@axis.com, micken@maths.lth.se

The basic idea behind GGDTRACK [4] is to build a

graph with object detections as vertices and use sparse

optical flow feature point tracks, KLT-tracks2, to connect

these vertices with edges. Then a flow capacity of one

is assigned to each edge and a network flow problem is

solved. To allow objects to occlude each other, long range

connections can be added to the graph. The problem is

that during occlusion a lot of feature point tracks will

jump from one object to the other, which means that the

feature point tracks are not reliably in such situations. In

order to address this issue, the common used linear motion

model is utilized in this setup [34]. All feasible solutions

to the network flow problem are embedded into a one

dimensional feature space consisting of a score with the

aim of making the score of the correct solution higher than

all other solutions. Then a linear program is used during

inference to efficiently search for the correct solution. We

also introduce a data representation denoted generalized

graph differences and show that it allows the training to

be performed efficiently both in terms of training speed

and data needs. The setup proposed is similar in sprit to

recent works [17, 46]. However, they need to solve a linear

program or a general convex problem respectively for each

example during each step of the SGD-like optimisation,

which is time consuming operations. Also, there is no need

to approximate and reformulate the model as Schulter et

al. [46] does. The small and efficient representation of

generalized graph differences gives the potential for using

larger graphs which is needed to fill in missing detections

2https://cecas.clemson.edu/˜stb/klt/

during, for example, occlusions by long range connections

in the graphs. A key insight here is that lots of small gen-

eralized graph differences can be generated from a single

annotated video sequence and be utilized as training data.

This gives a good way to utilize the annotations as much as

possible in order to avoid the need for extreme amounts of

training data. We also show that by using average-pooling

it is possible to use features for connecting detections that

are derived from a varying number of feature point tracks

of varying length.

A.4. A hierarchical multi-target tracker based on
detection for drone vision (HMTT)

Siyang Pan, Zhihang Tong and Yanyun Zhao

{pansiyang, tongzh, zyy}@bupt.edu.cn

HMTT is based on CenterNet [64], IOU-tracker [7]

and DaSiameseRPN [68]. During the stage of determining

object position by adopting CenterNet, we first divide

each classification into two categories, depending upon

whether the object is photographed from right above. Then,

we perform the detection results filtering by generating

tracklets employing IOU-tracker with the aid of Hungarian

algorithm. Using the bounding box results with tracklet-id

abandoned, we restart the association stage. Differently

from IOU-tracker, this time DaSiameseRPN and Kalman

filtering are additionally employed to fill the gaps when

matching with IOU does not work. Meanwhile, in case

of camera’s sudden move, SIFT points matching between

consecutive frames estimates the affine transformation

matrix, which assists bounding box association as well as

single target tracking. Each trajectory’s appearance feature

gotten from OSNet [63] is used to measure its distance

from other ones and we simply merge two trajectories if

their distance is close enough.

A.5. Improved simple online and realtime
tracking with a deep association metric
(IITD DeepSort)

Ajit Jadhav, Prerana Mukherjee, Vinay Kaushik and

Brejesh Lall

{jadhavajit.j16,prerana.m}@iiits.in,

vinaykaushik15@gmail.com, brejesh@ee.iitd.ac.in

IITD DeepSort is derived from DeepSORT [57]. The

RetinaNet architecture [32] is used for object detection

with modifications to the anchor parameters for improving

small object detection as well as detection of objects with

large variance in sizes. Increased range of scales helps in

detection of objects across a wider variety in object sizes

while incorporating finer scales improves the detection of

small objects. Squeeze-and-Excitation(SE) [23] blocks

are used to adaptively recalibrate channel-wise feature



responses by explicitly modelling interdependencies be-

tween channels. But instead of using the SE blocks in

the ResNet50 architecture, we pass the features from the

backbone feature layer to an SE block before feeding the

features to the feature pyramid network. On the oother

hand, a deep association metric is used along with the

SORT algorithm [57] to improve the performance of SORT

which helps to track objects through longer periods of

occlusions, effectively reducing the number of identity

switches. The network for deep assocaiation metric is

trained using Deep Cosine Metric Learning for Person

ReIdentification [56]. The object patches from the training

set are resized to a size of 128 × 128 and are used as input

for this network for training.

A.6. Auction algorithm for network flow problem
(OS-MOT)

Yong Wang, Lu Ding, Robert Laganière, Zhuojin Sun,

Chunhui Zhang and Wei Shi

ywang6@uottawa.ca, dinglu@sjtu.edu.cn,

laganier@eecs.uottawa.ca, harvards@gmail.com,

zhangchunhui@iie.ac.cn, weishi insky@126.com

OS-MOT is composed of three main modules: feature

extraction, data association, and model update. Specifi-

cally, targets are modeled by their visual appearance (via

HOG feature) and their spatial location (via bounding

boxes). The auction assign [6] algorithm is used for

associating detections to targets. Finally, model updating is

implemented.

A.7. Semantic Color Correlation Tracker (SC-
Track)

Noor M. Al-Shakarji, Filiz Bunyak, Guna Seetharaman

and Kannappan Palaniappan

nmahyd@mail.missouri.edu,

gunasekaran.seetharaman@rl.af.mil,

{bunyak,palaniappank}@missouri.edu

SCTrack [2, 1] is a time-efficient detection-based multi-

object tracking system. It employs a three-step cascaded

data association scheme that combines a fast spatial

distance only short-term data association, a robust tracklet

linking step using discriminative object appearance models,

and an explicit occlusion handling unit relying not only on

tracked objects motion patterns but also on environmental

constraints such as presence of potential occluders in the

scene.

A.8. Long-Short Term Prediction for Tracking
(SGAN)

Hongyang Yu, Guorong Li and Qingming Huang

hyang.yu@hit.edu.cn, liguorong@ucas.ac.cn,

qmhuang@ucas.ac.cn

SGAN uses the Social-LSTM [3] for long term pre-

diction of the objects. At the same time, the appearance of

the detections in adjacent frames are used for short term

prediction of the objects. Then a GAN network use the

two predictions generating the final position mask for the

objects. The radius of the neighbourhood is 32 pixels.

Correlation layer and 3 Convolutional layers are used in

generating masks and 2 Convolutional layers are used for

discriminating the ground-truth and generated mask.

A.9. Tracking by Detection with Optical Flow
(T&D-OF)

Xinyu Zhang, Xin Chen, Shuhao Chen, Chang Liu, Dong

Wang and Huchuan Lu

{chenxin3131,lcqctk0914,shuhaochn,

zhangxy71102}@mail.dlut.edu.cn,

{wdice,lhchuan}@dlut.edu.cn

T&D-OF is a modified version of MOTDT [11]. First,

the R-FCN [13] based classifier is removed, and we

add optical flow generated by FlowNetv2 [25] as addi-

tional cue for tracking. The ReID part of our model3 is

trained on MOT16 [38], Market1501 [62], CUHK01 and

CUHK03 [30] datasets. We do not perform fine-tuning on

the VisDrone data.

A.10. TrackletNet Tracker in Drone based scenes
(TNT DRONE)

Haotian Zhang, Yanting Zhang, Gaoang Wang, Tsung-

wei Huang and Jenq-Neng Hwang

haotiz@uw.edu, zhangyt@bupt.edu.cn,

{gaoang,twhuang,hwang}@uw.edu

TNT DRONE follows the “tracking by detection” scheme.

The Faster R-CNN [43] is trained to detect the objects

in the images. Given the detections in different frames,

detection association is computed to generate tracklets for

the Vertex Set V (denotes different tracklets). After that,

each two tracklets are put into a novel TrackletNet [52, 60]

to measure the connectivity, which formed the similarity on

the Edge Set E. A graph model G can be derived from V

and E. Finally, the tracklets with the same ID are grouped

into one cluster using the graph partition approach [24].

A.11. Online multi-object tracking using joint
domain information in traffic scenarios
(TrackKITSY)

Wei Tian, Jinrong Hu, Yuduo Song, Zhaotang Chen,

Long Chen and Martin Lauer

3https://github.com/longcw/MOTDT



{wei.tian, martin.lauer}@kit.edu, utppm@student.kit.edu,
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TrackKITSY is based on the detections of the Cas-

cade R-CNN [8]. Several modifications are applied to the

original Cascade R-CNN to adapt to this dataset. First,

to fit the big variance of bounding box aspect ratio, we

add more anchors with different aspect ratios in the RPN.

Second, photo metric distortion and random cropping are

used as data augmentation in training. Third, lower IoU

threshold is used in non-maximum-suppression (NMS)

in the post-processing. The reason is that, according to

our observation, the objects with valid annotation seldom

overlap, while the overlapping objects are usually in the

“ignored” region. Last, multi-scale training and testing

are used to improve the precision. The tracking module is

based on the work [51] with modifications adapted to the

current dataset.

A.12. VCL’s Deep Affinity Network (VCLDAN)

Zhibin Xiao

xzb18@mails.tsinghua.edu.cn

VCLDAN is based on the DAN tracker [49] and adds the

score and category id information to the output. It can learn

compact yet comprehensive features of pre-detected objects

at several levels of abstraction, and perform exhaustive pair-

ing permutations of those features in any two frames to infer

object affinities. The open source implementation is avail-

able at https://github.com/shijieS/SST.git.
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[4] H. Ardö and M. Nilsson. Multi target tracking by learning

from generalized graph differences. CoRR, abs/1908.06646,

2019.

[5] S. H. Bae and K. Yoon. Robust online multi-object track-

ing based on tracklet confidence and online discriminative

appearance learning. In CVPR, pages 1218–1225, 2014.

[6] D. P. Bertsekas. Auction algorithms for network flow prob-

lems: A tutorial introduction. Comp. Opt. and Appl., 1(1):7–

66, 1992.

[7] E. Bochinski, V. Eiselein, and T. Sikora. High-speed

tracking-by-detection without using image information. In

AVSS, pages 1–6, 2017.

[8] Z. Cai and N. Vasconcelos. Cascade R-CNN: delving into

high quality object detection. In CVPR, pages 6154–6162,

2018.

[9] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu. Gcnet: Non-

local networks meet squeeze-excitation networks and be-

yond. CoRR, abs/1904.11492, 2019.

[10] G. Chen, J. Lu, M. Yang, and J. Zhou. Spatial-

temporal attention-aware learning for video-based person re-

identification. TIP, 28(9):4192–4205, 2019.

[11] L. Chen, H. Ai, Z. Zhuang, and C. Shang. Real-time multiple

people tracking with deeply learned candidate selection and

person re-identification. In ICME, pages 1–6, 2018.

[12] P. Chu and H. Ling. Famnet: Joint learning of feature, affin-

ity and multi-dimensional assignment for online multiple ob-

ject tracking. In ICCV, 2019.

[13] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection via

region-based fully convolutional networks. In NeuIPS, pages

379–387, 2016.

[14] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, pages 886–893, 2005.

[15] C. Dicle, O. I. Camps, and M. Sznaier. The way they move:

Tracking multiple targets with similar appearance. In ICCV,

pages 2304–2311, 2013.

[16] D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, W. Zhang,

Q. Huang, and Q. Tian. The unmanned aerial vehicle bench-

mark: Object detection and tracking. In ECCV, 2018.

[17] D. Frossard and R. Urtasun. End-to-end learning of multi-

sensor 3d tracking by detection. In ICRA, pages 635–642,

2018.

[18] J. Gao and R. Nevatia. Revisiting temporal modeling for

video-based person reid. CoRR, abs/1805.02104, 2018.

[19] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun. 3d

traffic scene understanding from movable platforms. TPAMI,

36(5):1012–1025, 2014.

[20] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the KITTI vision benchmark suite. In

CVPR, pages 3354–3361, 2012.

[21] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. TPAMI,

37(3):583–596, 2015.

[22] M. Hsieh, Y. Lin, and W. H. Hsu. Drone-based object count-

ing by spatially regularized regional proposal network. In

ICCV, 2017.

[23] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-

works. In CVPR, pages 7132–7141, 2018.

[24] T.-W. Huang, J. Cai, H. Yang, H.-M. Hsu, and J.-N. Hwang.

Multi-view vehicle re-identification using temporal attention

model and metadata re-ranking. In CVPRW, 2019.

[25] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In CVPR, pages 1647–1655, 2017.

[26] M. Keuper, S. Tang, B. Andres, T. Brox, and B. Schiele. Mo-

tion segmentation & multiple object tracking by correlation

co-clustering. TPAMI, 2018.

[27] C. Kim, F. Li, and J. M. Rehg. Multi-object tracking with

neural gating using bilinear LSTM. In ECCV, pages 208–

224, 2018.
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